As the hypersonic glider with the highest test success rate in the United States, C-HGB (Common Hypersonic Glide Body) has been listed as a key development project by the U.S. Department of Defense, and is expected to develop into a common weapon of the three services. In this paper, the aerodynamic shape and stealth performance of this kind of "ball + biconical + wing" are studied. The orthogonal design considering interaction is used to analyze the parameter sensitivity under multiple constraints, and the improved optimization algorithm with adaptive learning mechanism based on de difference mutation operator is used for aerodynamic optimization. The optimized shape adopts the simple and efficient sharp edge design, which can not only improve the lift drag ratio, but also reduce the radar scattering cross-sectional area and greatly improve the penetration ability. The sharp edge design changes the surface temperature distribution of the projectile, reduces the manufacturing cost, and has positive significance for the design of thermal protection system and infrared stealth. The results show that the sharp edge design can obtain better aerodynamic stealth performance, and is a potential design scheme of hypersonic glider in the future.
ZHOU Wenshuo
,
XIA Lu
,
WANG Peijun
,
ZHOU Lin
. Optimization design of aerodynamic stealth with sharp edges in C-HGB layout[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(S1)
: 726375
-726375
.
DOI: 10.7527/S1000-6893.2021.26375
[1] 张元涛, 王巍, 林娟娟. 高超声速武器发展及作战运用探析[J]. 军事文摘, 2020(15): 11-14. ZHANG Y T, WANG W, LIN J J. Analysis on the development and operational application of hypersonic weapons[J]. Military Digest, 2020(15): 11-14 (in Chinese).
[2] 黄如昕, 刘朝兴, 刘礼. 高超声速武器:用实力诠释"唯快不破"[N]. 解放军报, 2020-11-27(10). HUANG R X. LIU C X, LIU L. Hypersonic weapon: Using strength to explain that only speed cannot be broken[N]. PLA Daily, 2020-11-27(10) (in Chinese).
[3] 潘金宽. 高超声速武器未来作战应用猜想[J]. 军事文摘, 2020(15): 15-17. PAN J K. Conjecture on the future combat application of hypersonic weapons[J]. Military Digest, 2020(15): 15-17 (in Chinese).
[4] 刘深深, 冯毅, 杨肖峰, 等. 类AHW助推滑翔飞行器气动布局优化设计分析[J]. 空气动力学学报, 2019, 37(2): 226-233. LIU S S, FENG Y, YANG X F, et al. Study on the optimization and aerodynamics characteristics analysis for AHW analog boost gliding vehicle[J]. Acta Aerodynamica Sinica, 2019, 37(2): 226-233 (in Chinese).
[5] 战培国. 美国陆军先进高超声速武器气动问题分析[J]. 航空科学技术, 2015, 26(1): 7-11. ZHAN P G. Aerodynamic analysis of US army advanced hypersonic weapon[J]. Aeronautical Science & Technology, 2015, 26(1): 7-11 (in Chinese).
[6] 薛普, 杨依峰, 王锁柱, 等. 多平面升力体外形设计与气动/隐身性能研究[J]. 导弹与航天运载技术, 2019(5): 27-32. XUE P, YANG Y F, WANG S Z, et al. Configuration design and aerodynamic and stealth characteristics research of multi-planar lift-body vehicle[J]. Missiles and Space Vehicles, 2019(5): 27-32 (in Chinese).
[7] 焦子涵, 邓帆, 刘辉, 等. 高超声速飞行器气动/隐身优化设计方法[J]. 宇航学报, 2016, 37(9): 1031-1040. JIAO Z H, DENG F, LIU H, et al. Aerodynamic and stealthy optimization design method of hypersonic vehicle[J]. Journal of Astronautics, 2016, 37(9): 1031-1040 (in Chinese).
[8] 刘国富, 王和平, 聂璐, 等. 锐边高超声速再入飞行器气动隐身综合设计[J]. 上海航天, 2016, 33(2): 100-105. LIU G F, WANG H P, NIE L, et al. Stealth-aerodynamic comprehensive design of a sharp-edge hypersonic Re-entry vehicle[J]. Aerospace Shanghai, 2016, 33(2): 100-105 (in Chinese).
[9] BARTH T, LONGO J M A. Advanced aerothermodynamic analysis of SHEFEX I[J]. Aerospace Science and Technology, 2010, 14(8): 587-593.
[10] EGGERS T, BARTH T. Aerodynamic analysis of the DLR flight experiment SHEFEX[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
[11] 朱广生. 再入机动飞行器气动设计与实践[M].北京: 中国宇航出版社, 2017. ZHU G S. Aerodynamic design and practice of reentry motor vehicle[M].Beijing: China Astronautic Publishing House, 2017 (in Chinese).
[12] TAGUCHI G. New trends in multivariate diagnosis[J]. Journal of Quality Engineering Society, 2001, 9(4):74-95.
[13] CLEARY J W. Effects of angle of attack and bluntness on laminar heating-rate distributions of a 15 deg cone at a Mach number of 10.6: NASA TN-D-5450[R].Washington, D.C.:NASA,1969.
[14] 张翔, 阎超, 杨威, 等. 高超声速飞行器气动热网格依赖性研究[J]. 战术导弹技术, 2016(3): 21-27. ZHANG X, YAN C, YANG W, et al. Investigation of the grid-dependency in heat transfer simulation for hypersonic vehicle[J]. Tactical Missile Technology, 2016(3): 21-27 (in Chinese).
[15] 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130. YAN C, YU J J, LI J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese).
[16] 程巧怡. 飞翼布局气动隐身协同优化设计方法研究[D].西安: 西北工业大学,2020:27-38. CHENG Q Y. Research on aerodynamic stealth collaborative optimization design method of flying wing layout[D].Xi'an: Northwestern Polytechnical University, 2020:27-38(in Chinese).
[17] 李柱贞. 雷达散射截面常用计算方法[M].北京: 目标特性研究编辑部,1981:87-88. LI Z Z. Common calculation methods of radar cross section[M].Beijing: Editorial Office of Target Characteristics Research, 1981:87-88(in Chinese).
[18] 桑建华. 飞行器隐身技术[M].北京: 航空工业出版社, 2013. SANG J H. Low-observable technologies of aircraft[M].Beijing: Aviation Industry Press, 2013 (in Chinese).
[19] 陶烨. 高超声速滑翔飞行器低可探测性外形和弹道设计方法研究[D].长沙: 国防科技大学, 2017. TAO Y. Low detectable shape and trajectory design of hypersonic glide vehicle[D].Changsha: National University of Defense Technology, 2017 (in Chinese).
[20] CALVO J B, EGGERS T. Application of a coupling of aerodynamics and flight dynamics to the SHEFEX I flight experiment[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
[21] EUGENE F K. Radar cross section[M].Raleigh: SciTech Publishing Inc.,2004:275-296.
[22] 于哲峰, 唐小伟, 张志成, 等. 飞行器气动与隐身综合特性数值分析[J]. 宇航学报, 2010, 31(2): 349-354. YU Z F, TANG X W, ZHANG Z C, et al. Numerical analysis on the aerocraft aerodynamics/scattering performance[J]. Journal of Astronautics, 2010, 31(2): 349-354 (in Chinese).