Articles

Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF

  • Kai XIONG ,
  • Chunling WEI ,
  • Liansheng LI ,
  • Peng ZHOU
Expand
  • Science and Technology on Space Intelligent Control Laboratory,Beijing Institute of Control Engineering,Beijing 100094,China

Received date: 2021-08-16

  Revised date: 2021-08-23

  Accepted date: 2021-09-25

  Online published: 2021-10-12

Supported by

Civil Aerospace Advance Research Project(D020403)

Abstract

An integrated navigation method based on X-ray pulsars and inter-satellite measurements is designed for constellation satellite autonomous navigation with high-accuracy requirement. The X-ray detector is used to obtain the pulse arrival time. The relative position vector measurement between satellites is obtained from star cameras and inter-satellite links. A navigation filter is designed to process the obtained data, so as to estimate the kinematic states of the satellites that participate in the navigation. To cope with the problem that the ephemeris error of Earth affects the integrated navigation performance, the position vector of Earth relative to the solar system barycenter is augmented as a state vector, and an augmented extended Kalman filter is designed. The position vector of Earth for navigation is estimated in real time, such that the effect of the ephemeris error of Earth is suppressed. In addition, to cope with the problem that state estimation accuracy is affected by the choice of filtering parameters, a Q-Learning Extended Kalman Filter (QLEKF) is designed. The key idea is to select the appropriate filtering parameters adaptively with the Q-learning method, which has the decision-making ability. It is illustrated via numerical simulations that effect of the ephemeris error of Earth on the autonomous navigation performance of constellation is decreased efficiently using the proposed algorithm. The QLEKF is superior to traditional filtering algorithms in positioning accuracy.

Cite this article

Kai XIONG , Chunling WEI , Liansheng LI , Peng ZHOU . Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526232 -526232 . DOI: 10.7527/S1000-6893.2021.26232

References

1 ZHANG H, JIAO R, XU L P. Orbit determination using pulsar timing data and orientation vector[J]. Journal of Navigation201972(1): 155-175.
2 LIN H Y, XU B, LIU J X. Designing observation scheme in X-ray pulsar-based navigation with probability ellipsoid[J]. Advances in Space Research201964(9): 1639-1651.
3 刘劲, 韩雪侠, 宁晓琳, 等. 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报202041(8): 623486.
  LIU J, HAN X X, NING X L, et al. Ultra-fast estimation of pulsar period based on EMD-CS[J]. Acta Aeronautica et Astronautica Sinica202041(8): 623486 (in Chinese).
4 SU J Y, FANG H Y, BAO W M, et al. Fast simulation of X-ray pulsar signals at a spacecraft[J]. Acta Astronautica2020166: 93-103.
5 WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538.
6 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报201927(3): 281-287.
  SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology201927(3): 281-287 (in Chinese).
7 YU W H. Characterization of X-ray pulsar navigation for tracking closed earth orbits[J]. Journal of Guidance, Control, and Dynamics201942(10): 2310-2313.
8 HE Y B, MEI Z W, WANG L, et al. The X-ray pulsar navigation technology and recent progresses in deep space exploration[C]∥ Second Target Recognition and Artificial Intelligence Summit Forum. Bellingham: International Society for Optics and Photonics, 2020: 11427.
9 WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation201770(4): 829-846.
10 XU Q, WANG H L, FENG L, et al. A novel X-ray pulsar integrated navigation method for ballistic aircraft[J]. Optik2018175: 28-38.
11 SUN J, GUO P B, WU T, et al. Pulsar/star tracker/INS integrated navigation method based on asynchronous observation model[J]. Journal of Aerospace Engineering201932(5): 04019075.
12 SU Q Y, HUANG Y. Observability analysis and navigation algorithm for distributed satellites system using relative range measurements[J]. Journal of Systems Science and Complexity201831(5): 1206-1226.
13 XIONG K, WEI C L, ZHANG H Y. Parallel model adaptive Kalman filtering for autonomous navigation with line-of-sight measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019233: 4017-4031.
14 LI Y, LI X, WU P, et al. Integrating satellite-to-satellite tracking with star tracker navigation for satellite constellation at earth-moon L2 point [J]. Journal of Chinese Inertial Technology202028(1): 61-66.
15 WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research201351(12): 2394-2404.
16 WANG S, CUI P Y, GAO A, et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter[J]. Acta Astronautica2017138: 68-78.
17 GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal201919(3): 1127-1134.
18 李晓宇, 姜宇, 金晶, 等. 脉冲星导航系统的星历表误差RKF校正算法[J]. 宇航学报201738(1): 26-33.
  LI X Y, JIANG Y, JIN J, et al. RKF method for pulsar based navigation with emphasis error correction[J]. Journal of Astronautics201738(1): 26-33 (in Chinese).
19 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测20181(1): 1-15.
  FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control and Detection20181(1): 1-15 (in Chinese).
20 PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics201134(5): 1285-1297.
21 RISTIC B, FARINA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceedings—Radar, Sonar and Navigation, 2003150(2): 65.
22 LEI M, VAN WYK B J, QI Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems201147(1): 37-57.
23 秦永元, 张洪钺,汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998.
  QIN Y Y, ZHANG H Y, WANG S H. Kalman filter and principle of integrated navigation[M]. Xi’an: Northwestern Polytechnical University Press, 1998 (in Chinese).
24 WEI Q L, LEWIS F L, SUN Q Y, et al. Discrete-time deterministic Q-learning: A novel convergence analysis[J]. IEEE Transactions on Cybernetics201747(5): 1224-1237.
25 LUO B, WU H N, HUANG T W. Optimal output regulation for model-free quanser helicopter with multistep Q-learning[J]. IEEE Transactions on Industrial Electronics201865(6): 4953-4961.
26 LOW E S, ONG P, CHEAH K C. Solving the optimal path planning of a mobile robot using improved Q-learning[J]. Robotics and Autonomous Systems2019115: 143-161.
27 XIONG K, WEI C L, ZHANG H Y. Q?learning for noise covariance adaptation in extended Kalman filter[J]. Asian Journal of Control202123(4): 1803-1816.
28 SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics200629(1): 49-63.
29 BUSSE F D, HOW J P, SIMPSON J. Demonstration of adaptive extended Kalman filter for low-earth-orbit formation estimation using CDGPS[J]. Navigation200350(2): 79-93.
30 HANLON P D, MAYBECK P S. Multiple-model adaptive estimation using a residual correlation Kalman filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems200036(2): 393-406.
Outlines

/