An efficient novel method different from the traditional numerical integration method is proposed for transient forced response calculation of mistuned bladed disks. Firstly, under the premise of accurate description of the dynamic structure characteristics of the bladed disk, the number of degrees of freedom of the large-scale finite element model of the bladed disk is reduced using the reduced-order modeling. The blade surface aerodynamic loads are then simulated when the accelerated turbine blades pass through a complex flow field, considering the influence of rotation speed on the natural frequency and mode shapes of the mistuned bladed disk. The resonance analysis determines the rotational speed range of the bladed disk resonance and analyzes the excitation order components causing resonance. Finally, the transient forced responses and amplitude amplifications are numerically studied. The effect of the excitation force of different rotation accelerations on the transient amplitude amplification factor is illustrated by a large number of computational results and comparative analyses. The results of a turbine bladed disk composed of 86 blades show that the amplitude of the transient forced response decreases with the increase of the rotation acceleration, and that the transient amplification factor of the mistuned bladed disk is 30% larger than that in the steady state with the same damping.
JING Tong
,
ZANG Chaoping
,
ZHANG Tao
,
Yevgen Pavlorich PETROV
. Transient forced response analysis of mistuned bladed disks under complex time-varying excitation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(9)
: 224529
-224529
.
DOI: 10.7527/S1000-6893.2021.24529
[1] COWLES B A. High cycle fatigue in aircraft gas turbines-an industry perspective[J]. International Journal of Fracture, 1996, 80(2-3):147-163.
[2] 李其汉, 王延荣, 王建军. 航空发动机叶片高循环疲劳失效研究[J]. 航空发动机, 2003, 29(4):16-18, 41. LI Q H, WANG Y R, WANG J J. Investigation of high cycle fatigue failures for the aero engine blades[J]. Aeroengine, 2003, 29(4):16-18, 41(in Chinese).
[3] 王建军, 于长波, 李其汉. 错频叶盘结构振动模态局部化特性分析[J]. 航空动力学报, 2009, 24(4):788-792. WANG J J, YU C B, LI Q H. Localization characteristics of vibratory mode for bladed disk assemblies[J]. Journal of Aerospace Power, 2009, 24(4):788-792(in Chinese).
[4] SLATER J, MINKIEWICZ G, BLAIR A. Forced response of bladed disk assemblies-A survey[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 1998:3743.
[5] KRACK M, SALLES L, THOUVEREZ F. Vibration prediction of bladed disks coupled by friction joints[J]. Archives of Computational Methods in Engineering, 2017, 24(3):589-636.
[6] 臧朝平, 段勇亮, PETROV E P. 失谐叶片轮盘的减缩建模及动力响应预测方法[J]. 航空学报, 2015, 36(10):3305-3315. ZANG C P, DUAN Y L, E.P.PETROV. Reduced-order modelling and dynamic response prediction method for mistuned bladed disks[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3305-3315(in Chinese).
[7] DRESIG H, FIDLIN A. Schwingungen mechanischer Antriebs systeme[M]. Berlin:Springer Berlin Heidelberg, 2014.
[8] MARKERT R, SEIDLER M. Analytically based estimation of the maximum amplitude during passage through resonance[J]. International Journal of Solids and Structures, 2001, 38(10-13):1975-1992.
[9] AYERS J P, FEINER D M, GRIFFIN J H. A reduced-order model for transient analysis of bladed disk forced response[J]. Journal of Turbomachinery, 2006, 128(3):466-473.
[10] YASUTOMO K. Study on transient vibration of mistuned bladed disk passing through resonance[C]//ASME Turbo Expo:Turbine Technical Conference & Exposition.New York:AMSE, 2013.
[11] HARTUNG A. A numerical approach for the resonance passage computation[C]//ASME Turbo Expo:Power for Land, Sea, & Air. New York:AMSE,2010.
[12] HACKENBERG H P, HARTUNG A. An approach for estimating the effect of transient sweep through a resonance[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:AMSE, 2015
[13] WALLASCHEK J, VON SCHEIDT L P, POHLE L, et al. Transient amplitude amplification of mistunedblisks[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(11):112502.
[14] BONHAGE M, ADLER J T, KOLHOFF C, et al. Transient amplitude amplification of mistuned structures:An experimental validation[J]. Journal of Sound and Vibration, 2018, 436:236-252.
[15] SIEWERT C, STVER H. Transient forced response analysis of mistuned steam turbine blades during start-up and Coast-down[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. New York:AMSE, 2014
[16] MICHAEL W. Rotor-stator interactions in a four-stage low-speed axial compressor-part i:Unsteady profile pressures and the effect of clocking[J]. Journal of Turbomachinery, 2004, 126(4):833-845.
[17] MAILACH R, LEHMANN I, VOGELER K. Periodical unsteady flow within a rotor blade row of an axial compressor-part II:Wake-tip clearance vortex interaction[J]. Journal of Turbomachinery, 2008, 130(4):1587-1597
[18] MARCO E, ARMIN M, PETER J. Analysis of rotor-stator-interaction and blade-to-blade measurements in atwo stage axial flow compressor[J]. Journal of Turbomachinery, 2011, 133(1):186-192.
[19] BREARD C, GREEN J S, IMREGUN M. Low-engine-order excitation mechanisms in axial-flow turbomachinery[J]. Journal of Propulsion and Power, 2003, 19(4):704-712.
[20] ZHOU B, MUJEZINOVIC A, COLEMAN A, et al. Forced response prediction for steam turbine last stage blade subject to low engine order excitation[C]//Proceedings of ASME 2011 Turbo Expo:Turbine Technical Conference and Exposition.New York:AMSE, 2012:2447-2453.
[21] STUMMANN S, JESCHKE P, METZLER T. Circumferentially non-uniform flow in the rear stage of a multistage compressor[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:AMSE, 2015.
[22] TYLER J M, SOFRIN T G. Axial flow compressor noise studies[R]. SAE Technical Papers, 1962:70
[23] FIGASCHEWSKY F, KUEHHORN A, BEIROW B, et al. Analysis of mistuned forced response in an axial high-pressure compressor rig with focus on Tyler-Sofrin modes[J]. The Aeronautical Journal, 2019, 123(1261):356-377.
[24] ZAKER T A. Calculation of the complementary error function of complex argument[J]. Journal of Computational Physics, 1969, 4(3):427-430.