[1] LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1):586-598.
[2] NIEDZWIECK A, RIBNER H S. Subjective loudness of sonic-boom:N-wave and minimized ('low-boom') signatures:UTIAS-TN-1977-215[R]. Toronto:University of Toronto Institute for Aerospace Studies, 1977.
[3] CARLSON H. The shock-wave noise problem of supersonic aircraft in steady flight[R]. Washington, D.C.:NASA, 1959.
[4] BOULANGER P, RASPET R, BASS H E. Sonic boom propagation through a realistic turbulent atmosphere[J]. The Journal of the Acoustical Society of America, 1995, 98(6):3412-3417.
[5] LIPKENS B, BLACKSTOCK D T. Model experiment to study sonic boom propagation through turbulence. Part I:General results[J]. The Journal of the Acoustical Society of America, 1998, 103(1):148-158.
[6] MORGENSTERN J, NORSTRUD N, SOKHEY J, et al. Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period:NASA/CR-2013-217820[R]. Washington, D.C.:NASA,2013.
[7] MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35(N+3)[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA,2010.
[8] NASA. X-59 quiet supersonic technology aircraft[EB/OL]. (2018-03)[2021-07-21]. https://www.nasa.gov/sites/default/files/thumbnails/image/lrc_20180319_lbfdpromo_ne1207_0.jpg.
[9] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).
[10] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft:A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese).
[11] 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性飞行测量与数值模拟分析[J]. 空气动力学学报, 2019, 37(4):675-682. QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):675-682(in Chinese).
[12] 冷岩, 钱战森, 刘中臣. 超声速飞行器声爆特性数值模拟预测及影响因素分析[C]//首届中国空气动力学大会, 2018. LENG Y, QIAN Z S, LIU Z C. Numerical simulation prediction of sonic explosion characteristics of supersonic aircraft and analysis of influencing factors[C]//The First China Aerodynamics Conference, 2018(in Chinese).
[13] 刘中臣, 钱战森, 冷岩. 声爆近场空间压力分布风洞试验精确测量技术研究[C]//首届中国空气动力学大会, 2018. LIU Z C, QIAN Z S, LENG Y. Research on precise measurement technique for wind tunnel test of spatial pressure distribution in near field of acoustic explosion[C]//The First China Aerodynamics Conference, 2018(in Chinese).
[14] LENG Y, QIAN Z S. Sonic boom signature prediction and analysis for a type of hypersonic long-range civil vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017.
[15] 冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报, 2019, 37(4):655-662, 689. LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J]. Acta Aerodynamica Sinica, 2019, 37(4):655-662, 689(in Chinese).
[16] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458(in Chinese).
[17] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configurations[J]. Aeronautical Science & Technology, 2016, 27(7):12-16(in Chinese).
[18] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power, 2010, 25(2):359-365(in Chinese).
[19] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese).
[20] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4):663-674. QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4):663-674(in Chinese).
[21] 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1):124916. WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124916(in Chinese).
[22] 徐悦, 瞿丽霞, 韩硕, 等. 超声速民机的高可信度声爆预测方法[M]//孙侠生. 绿色航空技术创新与发展. 北京:航空工业出版社, 2021:873-893. XU Y, QU L X, HAN S, et al. High-fidelity sonic boom prediction methods for a supersonic civil transport[M]//SUN X S. Innovation and development of green aviation technology[M]. Beijing:Aviation Industry Press, 2021:873-893(in Chinese).
[23] 兰世隆. 超声速民机声爆理论、预测和最小化方法概述[J]. 空气动力学学报, 2019, 37(4):646-654, 645. LAN S L. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):646-654, 645(in Chinese).
[24] 冯晓强, 宋笔锋, 李占科. 低声爆静音锥设计方法研究[J]. 航空学报, 2013, 34(5):1009-1017. FENG X Q, SONG B F, LI Z K. Research of low sonic boom quiet spike design method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1009-1017(in Chinese).
[25] 李占科, 彭中良, 徐合良. 静音锥对超声速客机声爆水平的影响[J]. 航空工程进展, 2013, 4(3):346-351, 357. LI Z K, PENG Z L, XU H L. Effect of the quiet spike on sonic boom of the supersonic airliner[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3):346-351, 357(in Chinese).
[26] 乔建领. 超声速民机声爆预测与低声爆优化设计研究[D]. 西安:西北工业大学, 2019:81-95. QIAO J L. On sonic boom prediction and low-boom design optimization for supersonic transports[D]. Xi'an:Northwestern Polytechnical University, 2019:81-95(in Chinese).
[27] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[28] ZHANG Y D, HUANG J T, GAO Z H, et al. Inverse design of low boom configurations using proper orthogonal decomposition and augmented Burgers equation[J]. Chinese Journal of Aeronautics, 2019, 32(6):1380-1389.
[29] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5):122505. HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122505(in Chinese).
[30] 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究[J]. 飞行力学, 2010, 28(6):21-23, 27. FENG X Q, LI Z K, SONG B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6):21-23, 27(in Chinese).
[31] WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-348.
[32] WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956, 1(3):290-318.
[33] WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2):164-194.
[34] GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2):291-298.
[35] PAGE J, PLOTKIN K. An efficient method for incorporating computational fluid dynamics into sonic boom prediction[C]//9th Applied Aerodynamics Conference. Reston:AIAA, 1991.
[36] PLOTKIN K. Sonic boom shaping in three dimensions[C]//15th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2009.
[37] KANAMORI M, HASHIMOTO A, TAKAHASHI T, et al. Improvement of near-field waveform from supersonic vehicle using multipole analysis[C]//Proceedings of the 49th Fluid Dynamics Conference, 2013.
[38] SAITO Y, UKAI T, MIYAKOSHI K, et al. Sonic boom estimation using the multipole method for free-flight experiments[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[39] UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[40] KANAMORI M, MAKINO Y, ISHIKAWA H. Extension of multipole analysis to laterally asymmetric flowfield around supersonic flight vehicle[J]. Journal of Aircraft, 2018, 56(1):191-204.
[41] ZHA G C, CATTAFESTA L, ALVI F S. Silent and efficient supersonic bi-directional flying wing:HQ-E-DAA-TN63203[R]. Washington, D.C.:NASA, 2013.
[42] PLOTKIN K. From sonic boom to sonic puff[C]//19th International Congress on Acoustics Paper, 2007.
[43] ZHA G C. Toward zero sonic-boom and high efficiency supersonic UAS:A novel concept of supersonic bi-directional flying wing[C]//US Air Force Academic Outreach UAS Symposium, 2009.
[44] HORNING W A. Sonic boom in turbulence:NASA-CR-1879[R]. Washington, D.C.:NASA, 1971.
[45] AUGER T, COULOUVRAT F. Numerical simulation of sonic boom focusing[J]. AIAA Journal, 2002, 40(9):1726-1734.
[46] BLUMRICH R, COULOUVRAT F, HEIMANN D. Meteorologically induced variability of sonic-boom characteristics of supersonic aircraft in cruising flight[J]. The Journal of the Acoustical Society of America, 2005, 118(2):707-722.
[47] LIND A, SPARROW V. Including the effects of terrain reflections and postboom noise in sonic booms[C]//15th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA,2009.
[48] KÄSTNER M, HEIMANN D. Sound propagation of sonic booms through real atmospheres emitted from a new supersonic business aircraft[C]//Proceedings of the 29th International Conference on Alpine Meteorology, 2007:781-784.
[49] RACHAMI J, PAGE J. Sonic boom modeling of advanced supersonic business jets in NextGen[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010.
[50] LEE R A, DOWNING J M. Sonic booms produced by US Air Force and US Navy aircraft:Measured data:ADA244804[R]. Brooks AFB:Aerospace Medical Research Labs., 1991.
[51] LUNDBERG W R. Seasonal sonic boom propagation prediction:AL/OE-TR-1994-0132[R]. Wright-Patterson AFB:U.S. Armstrong Lab., 1994.
[52] YAMASHITA H, OBAYASHI S. Global sonic boom overpressure variation from seasonal temperature, pressure, and density gradients[J]. Journal of Aircraft, 2013, 50(6):1933-1938.
[53] HEIMANN D. Effects of long-term atmospheric variability on the width of a sonic-boom carpet produced by high-flying supersonic aircraft[J]. Acoustics Research Letters Online, 2001, 2(2):73-78.
[54] BLUMRICH R, COULOUVRAT F, HEIMANN D. Variability of focused sonic booms from accelerating supersonic aircraft in consideration of meteorological effects[J]. The Journal of the Acoustical Society of America, 2005, 118(2):696-706.
[55] COULOUVRAT F, BLUMRICH R, HEIMANN D. Meteorologically induced variability of sonic boom of a supersonic aircraft in cruising or acceleration phase[J]. AIP Conference Proceedings, 2006, 838(1):579-586.
[56] KANE E, PALMER T Y. Meteorological aspects of the sonic boom:AD 610-643[R]. Washington, D.C.:Federal Aviation Agency, 1964.
[57] KANE E J. Some effects of the nonuniform atmosphere on the propagation of sonic booms[J]. The Journal of the Acoustical Society of America, 1966, 39(5B):S26-S30.
[58] FRIEDMAN M P, KANE E J, SIGALLA A. Effects of atmosphere and aircraft motion on the location and intensity of a sonic boom[J]. AIAA Journal, 1963, 1(6):1327-1335.
[59] MAGLIERI D J, HILTON D A. Experiments on the effects of atmospheric refraction and airplane accelerations on sonic-boom ground-pressure patterns:NASA-TN-D-3520[R]. Washington, D.C.:NASA, 1966.
[60] ONYEONWU R O. The effects of wind and temperature gradients on sonic boom corridors:UTIAS-TN-168[R]. Toronto:University of Toronto Institute for Aerospace Studies, 1971.
[61] NICHOLLS J M. Meteorological effects on the sonic bang[J]. Weather, 1970, 25(6):265-271.
[62] HUBBARD H H, MAGLIERI D, HUCKEL V. Variability of sonic boom signatures with emphasis on the extremities of the ground exposure patterns[R]. Washington, D.C.:NASA, 1971.
[63] PIERCE A D. Atmospheric propagation at larger lateral distances from the flight track[C]//High-Speed Research:1994 Sonic Boom Workshop. Washington, D.C.:NASA, 1994:99-122.
[64] COULOUVRAT F. Sonic boom in the shadow zone:A geometrical theory of diffraction[J]. The Journal of the Acoustical Society of America, 2002, 111(1):499-508.
[65] MAGLIERI D J, PARROTT T L. Atmospheric effects on sonic-boom pressure signatures[J]. Sound:Its Uses and Control, 1963, 2(4):11-14.
[66] GEORGE A R, PLOTKIN K J. Sonic boom waveforms and amplitudes in a real atmosphere[J]. AIAA Journal, 1969, 7(10):1978-1981.
[67] HAYES W D, RUNYAN JR H L. Sonic-boom propagation through a stratified atmosphere[J]. The Journal of the Acoustical Society of America, 1972, 51(2C):695-701.
[68] CLEVELAND R O. Effects of atmospheric stratification on sonic-boom propagation[J]. The Journal of the Acoustical Society of America, 1995, 97(5):3257-3257.
[69] HILTON D, HUCKEL V, MAGLIERI D. Sonic-boom measurements during bomber training operations in the Chicago area:NASA-TN-D-3655[R]. Washington, D.C.:NASA, 1966.
[70] PAN Y S. Effects of winds and inhomogeneous atmosphere on sonic boom[J]. AIAA Journal, 1968, 6(7):1393-1395.
[71] MAGLIERI D J, HILTON D A, MCLEOD N J. Summary of variations of sonic boom signatures resulting from atmospheric effects:NASA-TM-X-59633[R]. Washington, D.C.:NASA, 1967.
[72] BALACHANDRAN N K, DONN W L, RIND D H. Concorde sonic booms as an atmospheric probe[J]. Science, 1977, 197(4298):47-49.
[73] PIERCE A D. Statistical theory of atmospheric turbulence effects on sonic-boom rise times[J]. The Journal of the Acoustical Society of America, 1971, 49(3B):906-924.
[74] PLOTKIN K J, GEORGE A R. Propagation of weak shock waves through turbulence[J]. Journal of Fluid Mechanics, 1972, 54(3):449-467.
[75] BASS H E, EZELL J, RASPET R. Effect of vibrational relaxation on rise times of shock waves in the atmosphere[J]. The Journal of the Acoustical Society of America, 1983, 74(5):1514-1517.
[76] BASS H E, LAYTON B A, BOLEN L N, et al. Propagation of medium strength shock waves through the atmosphere[J]. The Journal of the Acoustical Society of America, 1987, 82(1):306-310.
[77] TUBB P E. Measured effects of turbulence on the rise time of a weak shock:AIAA-1975-0543[R]. Reston:AIAA, 1975.
[78] PIERCE A D, SPARROW V W. Relaxation and turbulence effects on sonic boom signatures[C]//First Annual High-Speed Research Workshop. Washington, D.C.:NASA, 1992:1211-1240.
[79] BASS H E, RASPET R. Vibrational relaxation effects on the atmospheric attenuation and rise times of explosion waves[J]. The Journal of the Acoustical Society of America, 1978, 64(4):1208-1210.
[80] PIELEMEIER W H. The pierce acoustic interferometer as an instrument for the determination of velocity and absorption[J]. Physical Review, 1929, 34(8):1184-1203.
[81] KNUDSEN V O. The absorption of sound in gases[J]. The Journal of the Acoustical Society of America, 1935, 6(4):199-204.
[82] KNUDSEN V O. The absorption of sound in air, in oxygen, and in nitrogen-Effects of humidity and temperature[J]. The Journal of the Acoustical Society of America, 1933, 5(2):112-121.
[83] TUESDAY C S, BOUDART M. Vibrational relaxation times by the impact tube method:Technical Note No. 7[R]. Princeton:Princeton University, 1955.
[84] HENDERSON M C, HERZFELD K F. Effect of water vapor on the Napier frequency of oxygen and air[J]. The Journal of the Acoustical Society of America, 1965, 37(6):986-988.
[85] HARRIS C M. Absorption of sound in air versus humidity and temperature[J]. The Journal of the Acoustical Society of America, 1966, 40(1):148-159.
[86] MONK R G. Thermal relaxation in humid air[J]. The Journal of the Acoustical Society of America, 1969, 46(3B):580-586.
[87] PIERCY J E. Ro^le of the vibrational relaxation of nitrogen in the absorption of sound in air[J]. The Journal of the Acoustical Society of America, 1969, 46(3B):602-604.
[88] HODGSON J P, JOHANNESEN N H. Real-gas effects in very weak shock waves in the atmosphere and the structure of sonic bangs[J]. Journal of Fluid Mechanics, 1971, 50(1):17-20.
[89] HODGSON J P. Vibrational relaxation effects in weak shock waves in air and the structure of sonic bangs[J]. Journal of Fluid Mechanics, 1973, 58(1):187-196.
[90] GREENSPAN M. Rotational relaxation in nitrogen, oxygen, and air[J]. The Journal of the Acoustical Society of America, 1959, 31(2):155-160.
[91] HATANAKA K, SAITO T. Numerical analysis of weak shock attenuation resulting from molecular vibrational relaxation[J]. Shock Waves, 2011, 21(2):121-129.
[92] BAUDOIN M, COULOUVRAT F, THOMAS J L. Absorption of sonic boom by clouds[J]. AIP Conference Proceedings, 2006, 838(1):619-622.
[93] BAUDOIN M, COULOUVRAT F, THOMAS J L. Sound, infrasound, and sonic boom absorption by atmospheric clouds[J]. The Journal of the Acoustical Society of America, 2011, 130(3):1142-1153.
[94] KNESER H O. The interpretation of the anomalous sound-absorption in air and oxygen in terms of molecular collisions[J]. The Journal of the Acoustical Society of America, 1933, 5(2):122-126.
[95] EVANS L B, BASS H E, SUTHERLAND L C. Atmospheric absorption of sound:Theoretical predictions[J]. The Journal of the Acoustical Society of America, 1972, 51(5B):1565-1575.
[96] PIERCY J E, EMBLETON T F. Review of noise propagation in the atmosphere[J]. The Journal of the Acoustical Society of America, 1977, 61(6):1403-1418.
[97] SUTHERLAND L C. Review of the molecular absorption anomaly[J]. The Journal of the Acoustical Society of America, 1969, 46(1A):86.
[98] BASS H E, SUTHERLAND L C, ZUCKERWAR A J. Atmospheric absorption of sound:Update[J]. The Journal of the Acoustical Society of America, 1990, 88(4):2019-2021.
[99] BASS H E, SUTHERLAND L C, ZUCKERWAR A J, et al. Atmospheric absorption of sound:Further developments[J]. The Journal of the Acoustical Society of America, 1995, 97(1):680-683.
[100] TATARSKI V I. Wave propagation in a turbulent medium[M]. New York:Dover Publications, 2016.
[101] BLOKHINTZEV D. The propagation of sound in an inhomogeneous and moving medium II[J]. The Journal of the Acoustical Society of America, 1946, 18(2):329-334.
[102] LIGHTHILL M J. On the energy scattered from the interaction of turbulence with sound or shock waves[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1953, 49(3):531-551.
[103] HUBBARD H H, MAGLIERI D. Noise and sonic boom considerations in the operation of supersonic aircraft[C]//Fourth Congress of International Council of Aeronautical Sciences, 1965:207-225.
[104] HUBBARD H H. Ground measurements of sonic-boom pressures for the altitude range of 10,000 to 75,000 feet:NASA-TR-R-198[R]. Washington, D.C.:NASA, 1964.
[105] HOUBOLT J C, STEINER R, PRATT K G. Dynamic response of airplanes to atmospheric turbulence including flight data on input and response[R]. Washington, D.C.:NASA, 1964.
[106] STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht:Kluwer Academic Publishers,1988.
[107] PIERCE A D. Fundamental nonlinear equations of atmospheric acoustics:A synthesis of current physical models[J]. The Journal of the Acoustical Society of America, 1974, 56(S1):S42.
[108] RIBNER H S. Acoustic energy flux from shock-turbulence interaction[J]. Journal of Fluid Mechanics, 1969, 35(2):299-310.
[109] GARRICK I E, MAGLIERI D. A summary of results on sonic-boom pressure signature variations associated with atmospheric conditions:NASA-TN-D-4588[R]. Washington, D.C.:NASA, 1968.
[110] FRIEDMAN M P. A description of a computer program for the study of atmospheric effects on sonic booms[R]. Washington, D.C.:NASA, 1965.
[111] SHERLOCK R H, STOUT M B. Storm loading and strength of wood pole lines and a study of wind gusts:An experimental and analytical study of storm loading, and strength during storms, of electric power distribution lines[R]. New York:Edison Electric Institute, 1936.
[112] SCHMELTZER R A. Means, variances, and covariances for laser beam propagation through a random medium[J]. Quarterly of Applied Mathematics, 1967, 24(4):339-354.
[113] BROWN W. Propagation in random media:Cumulative effect of weak inhomogeneities[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(1):81-89.
[114] GRACHEVA M E, GURVICH A S. Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth[J]. Soviet Radiophysics, 1965, 8(4):511-515.
[115] AVERIYANOV M, OLLIVIER S, KHOKHLOVA V, et al. Random focusing of nonlinear acoustic N-waves in fully developed turbulence:Laboratory scale experiment[J]. The Journal of the Acoustical Society of America, 2011, 130(6):3595-3607.
[116] LIPKENS B, BLANC-BENON P. Numerical model for the weakly nonlinear propagation of sound through turbulence[C]//High-Speed Research:1994 Sonic Boom Workshop. Washington, D.C.:NASA, 1994:60-80.
[117] LIPKENS B, BLACKSTOCK D T. Model experiment to study sonic boom propagation through turbulence. Part II. Effect of turbulence intensity and propagation distance through turbulence[J]. The Journal of the Acoustical Society of America, 1998, 104(3):1301-1309.
[118] OLLIVIER S, BLANC-BENON P. Model experiments to study acoustic N-wave propagation through turbulent media[C]//10th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2004.
[119] PLOTKIN K, MAGLIERI D, SULLIVAN B. Measured effects of turbulence on the loudness and waveforms of conventional and shaped minimized sonic booms[C]//11th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2005.
[120] KANAMORI M, TAKAHASHI T, NAKA Y, et al. Numerical evaluation of effect of atmospheric turbulence on sonic boom observed in D-SEND#2 flight test[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017.
[121] UKAI T, OHTANI K, OBAYASHI S. Turbulent jet interaction with a long rise-time pressure signature[J]. Applied Acoustics, 2016, 114:179-190.
[122] SALZE É, YULDASHEV P, OLLIVIER S, et al. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence[J]. The Journal of the Acoustical Society of America, 2014, 136(2):556-566.
[123] KIM J H, SASOH A, MATSUDA A. Modulations of a weak shock wave through a turbulent slit jet[J]. Shock Waves, 2010, 20(4):339-345.
[124] SASOH A, HARASAKI T, KITAMURA T, et al. Statistical behavior of post-shock overpressure past grid turbulence[J]. Shock Waves, 2014, 24(5):489-500.
[125] INOKUMA K, WATANABE T, NAGATA K, et al. Finite response time of shock wave modulation by turbulence[J]. Physics of Fluids, 2017, 29(5):051701.
[126] INOKUMA K, WATANABE T, NAGATA K, et al. Overpressure fluctuation behind spherical shock wave propagating in grid-generated turbulence[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[127] 冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020, 41(2):123290. LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):123290(in Chinese).
[128] RIBNER H S, MORRIS P J, CHU W H. Laboratory simulation of development of superbooms by atmospheric turbulence[J]. The Journal of the Acoustical Society of America, 1973, 53(3):926-928.
[129] PIERCE A D, MAGLIERI D J. Effects of atmospheric irregularities on sonic-boom propagation[J]. The Journal of the Acoustical Society of America, 1972, 51(2C):702-721.
[130] ELMER K, JOSHI M. Variability of measured sonic boom signatures[R]. Washington, D.C.:NASA,1994.
[131] CROW S C. Distortion of sonic bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics, 1969, 37(3):529-563.
[132] PIERCE A D. Spikes on sonic-boom pressure waveforms[J]. The Journal of the Acoustical Society of America, 1968, 44(4):1052-1061.
[133] PALMER T Y. Effects of turbulence on the sonic boom[C]//5th Conference on Applied Meteorology of the American Meteorological Society, 1964.
[134] KAMALI G, PIERCE A D. Time dependence of variances of sonic boom waveform[J]. Nature, 1971, 234(5323):30-31.
[135] KARAVAINIKOV V N. Amplitude and phase fluctuations in a spherical wave[J]. Akusticheskij Zhurnal, 1957, 3(2):165-176.
[136] KELLY M, RASPET R, BASS H E. Scattering of sonic booms by anisotropic turbulence in the atmosphere[J]. The Journal of the Acoustical Society of America, 2000, 107(6):3059-3064.
[137] TATARSKII V I. The effects of the turbulent atmosphere on wave propagation[R]. Washington, D.C.:National Oceanic and Atmospheric Administration, U.S. Department of Commerce and the National Science Foundation, 1971.
[138] INGARD U, MALING JR G C. On the effect of atmospheric turbulence on sound propagated over ground[J]. The Journal of the Acoustical Society of America, 1963, 35(7):1056-1058.
[139] DAIGLE G A. Effects of atmospheric turbulence on the interference of sound waves above a finite impedance boundary[J]. The Journal of the Acoustical Society of America, 1979, 65(1):45-49.
[140] DAIGLE G A, PIERCY J E, EMBLETON T F W. Effects of atmospheric turbulence on the interference of sound waves near a hard boundary[J]. The Journal of the Acoustical Society of America, 1978, 64(2):622-630.
[141] DAIGLE G A. Correlation of the phase and amplitude fluctuations between direct and ground-reflected sound[J]. The Journal of the Acoustical Society of America, 1980, 68(1):297-302.
[142] CLIFFORD S F, LATAITIS R J. Turbulence effects on acoustic wave propagation over a smooth surface[J]. The Journal of the Acoustical Society of America, 1983, 73(5):1545-1550.
[143] MCBRIDE W E, BASS H E, RASPET R, et al. Scattering of sound by atmospheric turbulence:A numerical simulation above a complex impedance boundary[J]. The Journal of the Acoustical Society of America, 1991, 90(6):3314-3325.
[144] DE WOLF D A. A random-motion model of fluctuations in a nearly transparent medium[J]. Radio Science, 1983, 18(2):138-142.
[145] DAIGLE G A, PIERCY J E, EMBLETON T F W. Line-of-sight propagation through atmospheric turbulence near the ground[J]. The Journal of the Acoustical Society of America, 1983, 74(5):1505-1513.
[146] MARCHIANO R, COULOUVRAT F, THOMAS J L. Nonlinear focusing of acoustic shock waves at a caustic cusp[J]. The Journal of the Acoustical Society of America, 2005, 117(2):566-577.
[147] DAVY B A, BLACKSTOCK D T. Measurements of the refraction and diffraction of a short N wave by a gas-filled soap bubble[J]. The Journal of the Acoustical Society of America, 1971, 49(3B):732-737.
[148] PIACSEK A A. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts[J]. The Journal of the Acoustical Society of America, 2002, 111(1):520-529.
[149] PLOTKIN K J. State of the art of sonic boom modeling[J]. The Journal of the Acoustical Society of America, 2002, 111(1):530-536.
[150] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972.
[151] PIERCE A D. Acoustics:An introduction to its physical principles and applications[M]. New York:McGraw-Hill Book Co., 1981.
[152] KANG J. Nonlinear acoustic propagation of shock waves through the atmosphere with molecular relaxation[D]. State College:The Pennsylvania State University, 1991.
[153] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995.
[154] ZABOLOTSKAYA E A, KHOKHLOV R V. Quasi-plane waves in the nonlinear acoustics of confined beams[J]. Soviet Physics Acoustics, 1969, 15(2):35-40.
[155] KUZNETSOV V P. Equations of nonlinear acoustics[J]. Soviet Physics Acoustics, 1970, 16(1):467-470.
[156] AVERIYANOV M, KHOKHLOVA V A, CLEVELAND R O, et al. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media[J]. The Journal of the Acoustical Society of America, 2011, 129(4):1760-1772.
[157] GALLIN L J, RÉNIER M, GAUDARD E, et al. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows[J]. The Journal of the Acoustical Society of America, 2014, 135(5):2559-2570.
[158] DAGRAU F, RéNIER M, MARCHIANO R, et al. Acoustic shock wave propagation in a heterogeneous medium:A numerical simulation beyond the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2011, 130(1):20-32.
[159] KANAMORI M, TAKAHASHI T, ISHIKAWA H, et al. Numerical evaluation of sonic boom deformation due to atmospheric turbulence[J]. AIAA Journal, 2021, 59(3):972-986.
[160] MCDONALD B E. High-angle formulation for the nonlinear progressive-wave equation model[J]. Wave Motion, 2000, 31(2):165-171.
[161] MARCHIANO R, THOMAS J L, COULOUVRAT F. Experimental simulation of supersonic superboom in a water tank:Nonlinear focusing of weak shock waves at a fold caustic[J]. Physical Review Letters, 2003, 91(18):184301.
[162] SALAMONE J A, SPARROW V W, PLOTKIN K J. Solution of the lossy nonlinear tricomi equation applied to sonic boom focusing[J]. AIAA Journal, 2013, 51(7):1745-1754.
[163] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal, 2016, 54(10):3223-3231.
[164] YAMASHITA R, SUZUKI K. Lateral cutoff analysis of sonic boom using full-field simulation[J]. Aerospace Science and Technology, 2019, 88:316-328.
[165] YAMASHITA R, WUTSCHITZ L, NIKIFORAKIS N. A full-field simulation methodology for sonic boom modeling on adaptive Cartesian cut-cell meshes[J]. Journal of Computational Physics, 2020, 408:109271.
[166] CARLSON H, MACK R, MORRIS O. A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions:NASA TN D-3106[R]. Washington, D.C.:NASA, 1965.
[167] MORGENSTERN J. Distortion correction of low sonic boom measurements in wind tunnels[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA,2012.
[168] HONDA M, YOSHIDA K. D-SEND project for low sonic boom design technology[C]//28th International Congress of the Aeronautical Sciences, 2012.
[169] JONES L B. Lower bounds for sonic bangs[J]. The Journal of the Royal Aeronautical Society, 1961, 65(606):433-436.
[170] JONES L B. Lower bounds for sonic bangs in the far field[J]. Aeronautical Quarterly, 1967, 18(1):1-21.
[171] JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1):1-17.
[172] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181):651-653.
[173] GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal, 1969, 7(8):1542-1545.
[174] GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10):2091-2093.
[175] SEEBASS R, GEORGE A R. Sonic-boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2C):686-694.
[176] MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom:Six decades of research:NASA/SP-2014-622[R]. Washington, D.C.:NASA, 2014.
[177] DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation:NASA-TP-1348[R]. Washington, D.C.:NASA, 1979.
[178] HAYES W D. Sonic boom propagation in a stratified atmosphere, with computer program:NASA-CR-1299[R]. Washington, D.C.:NASA, 1969.
[179] CLEVELAND R, BLACKSTOCK D. Waveform freezing of sonic booms revisited[R]. Washington, D.C.:NASA, 1996.
[180] PLOTKIN K J. On the aging of sonic booms[J]. The Journal of the Acoustical Society of America, 1993, 93(4):2407.
[181] KOEGLER R K. Possible means of reducing sonic booms and effects through shock decay phenomena and some comments on aural response:NASA SP-147[R]. Washington, D.C.:NASA, 1967.
[182] FARHAT C, MAUTE K, ARGROW B, et al. Shape optimization methodology for reducing the sonic boom initial pressure rise[J]. AIAA Journal, 2007, 45(5):1007-1018.