Special Topic of NNW Progress and Application

Advances in viscous adaptive Cartesian grid methodology of NNW Project

  • CHEN Hao ,
  • YUAN Xianxu ,
  • WANG Tiantian ,
  • ZHOU Dan ,
  • ZHAO Ning ,
  • TANG Zhigong ,
  • BI Lin
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Key Laboratory of Rail Traffic Safety, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China;
    4. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-03-30

  Revised date: 2021-04-28

  Online published: 2021-05-26

Supported by

National Numerical Windtunnel Project; State Key Laboratory of Aerodynamics Foundation(SKLA-2019-12)

Abstract

Compared with traditional structured and unstructured grids, the Cartesian grid has the advantages of automation and high quality, and therefore is an important development direction of grid technology in the future. Relying on the National Numerical Windtunnel (NNW) Project basic research system, this paper studies viscous adaptive Cartesian grid methodology, focusing on the grid generation technology, adaptation method, and viscous wall boundary treatment method, for the development of Cartesian mesh generation software. For the grid generation technology, optimization of the quadtree or octree data structure is conducted, starting from optimization of the Cartesian grid data structure and based on the idea of the fully thread tree data structure; a more stable K-dimensional tree method compared to the traditional one is constructed aiming at the information search of facets. For the determination of grid types, the painting method and axis aligned bounding box method are developed to improve the efficiency, and a high-performance parallel computing technology based on message passing interface is developed for large-scale grids. In the aspect of adaptation technology, an adaptation method based on geometric features and flow field solution features is developed, the flow field structure capture criteria established, and the application of three-dimensional complex configuration carried out; to reduce the scale of global mesh, the anisotropic adaptive method is developed, and the comprehensive criteria for anisotropic feature recognition constructed; the normal ray refinement technology is developed to reduce the number of grids in the boundary layer. In the aspect of wall boundary processing, the overset Cartesian grid method is developed, and the overset grid scale matching technology and data interaction method constructed. Meanwhile, the adaptive application of the wall function method in the Cartesian grid framework is carried out to relax the size limitation of the wall grid and reduce the number of boundary layer grids, and finally the reliability of the method is verified by typical examples.

Cite this article

CHEN Hao , YUAN Xianxu , WANG Tiantian , ZHOU Dan , ZHAO Ning , TANG Zhigong , BI Lin . Advances in viscous adaptive Cartesian grid methodology of NNW Project[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 625732 -625732 . DOI: 10.7527/S1000-6893.2021.25732

References

[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese).
[2] IACCARINO G, HAM F. Automatic mesh generation for les in complex geometries[R]. 2005:19-30
[3] THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3):299-319.
[4] LEE K. 3-D transonic flow computations using grid systems with block structure[C]//5th Computational Fluid Dynamics Conference. Reston:AIAA, 1981.
[5] SAWADA K, TAKANASHI S. A numerical investigation on wing/nacelle interferences of USB configuration[C]//25th AIAA Aerospace Sciences Meeting. Reston:AIAA, 1987.
[6] 常兴华, 马戎, 张来平. 并行化非结构重叠网格隐式装配技术[J]. 航空学报, 2018, 39(6):121780. CHANG X H, MA R, ZHANG L P. Parallel implicit hole-cutting method for unstructured overset grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121780(in Chinese).
[7] NAKAHASHI K, ITO Y, TOGASHI F. Some challenges of realistic flow simulations by unstructured grid CFD[J]. International Journal for Numerical Methods in Fluids, 2003, 43(6-7):769-783.
[8] MITCHELTREE R A, SALAS M D, HASSAN H A. Grid embedding technique using Cartesian grids for Euler solutions[J]. AIAA Journal, 1988, 26(6):754-756.
[9] ZEEUW D L D. A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations[R]. 1996.
[10] JAE-DOO L. Development of an efficient viscous approach in a cartesian grid framework and application to rotor-fuselage interaction[D]. Georgia:Georgia Institute of Technology, 2006.
[11] SANG W M, YU J G. Numerically analyzing more efficiently high-lift aerodynamics of wing/body model with omni-tree Cartesian grids[J]. Aerospace Science and Technology, 2011, 15(5):375-380.
[12] MEINKE M, SCHNEIDERS L, GüNTHER C, et al. A cut-cell method for sharp moving boundaries in Cartesian grids[J]. Computers & Fluids, 2013, 85:135-142.
[13] UDAYKUMAR H S, MITTAL R, RAMPUNGGOON P, et al. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries[J]. Journal of Computational Physics, 2001, 174(1):345-380.
[14] 肖涵山, 陈作斌, 刘刚, 等. 基于Euler方程的三维自适应笛卡尔网格应用研究[J]. 空气动力学学报, 2003, 21(2):202-210. XIAO H S, CHEN Z B, LIU G, et al. Applications of 3-D adaptive Cartesian grid algorithm based on the Euler equations[J]. Acta Aerodynamica Sinica, 2003, 21(2):202-210(in Chinese).
[15] FUJIMOTO K, FUJII K, WANG Z J. Improvements in the reliability and efficiency of body-fitted Cartesian grid method[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[16] PESKIN C S. Flow patterns around heart valves:a numerical method[J]. Journal of Computational Physics, 1972, 10(2):252-271.
[17] MOHD Y. Combined immersed boundary/B-spline methods for simulations of flow in complex geometries[R]. CTR Annual Research Briefs, 1997:317-27.
[18] DADONE A, GROSSMAN B. Ghost-cell method for inviscid two-dimensional flows on Cartesian grids[J]. AIAA Journal, 2004, 42(12):2499-2507.
[19] DADONE A, GROSSMAN B. An immersed body methodology for inviscid flows on Cartesian grids[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[20] DADONE A, GROSSMAN B. Further developments in the three-dimensional Cartesian-grid ghost-cell method[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[21] LEE J D, RUFFIN S. Development of a turbulent wall-function based viscous Cartesian-grid methodology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[22] 刘剑明. 可压缩流体计算中的浸入边界方法及其应用[D]. 南京:南京航空航天大学, 2010. LIU J M. The immersed boundary method in compressible flows and its applications[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[23] 胡偶. 可压缩复杂流动笛卡尔网格方法研究及应用[D]. 南京:南京航空航天大学, 2013. HU O. Development of Cartesian grid method forcomplex compressible flows and its applications[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[24] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5):121697. TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121697(in Chinese).
[25] BAKER T J. Mesh generation:Art or science?[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[26] CHARLTON E F. An octree solution to conservation-laws over arbitrary regions with applications to aircraft aerodynamics[D]. Michigan:University of Michigan, 1997.
[27] DELANAYE M, AFTOSMIS M, BERGER M, et al. Automatic hybrid-Cartesian grid generation for high-Reynolds number flows around complex geometries[C]//37th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1999.
[28] BERGER M, LEVEQUE R. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries[C]//9th Computational Fluid Dynamics Conference. Reston:AIAA, 1989.
[29] MELTON J, BERGER M, AFTOSMIS M, et al. 3D applications of a Cartesian grid Euler method[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995.
[30] BUNING P, PULLIAM T. Cartesian off-body grid adaption for viscous time-accurate flow simulations[C]//20th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2011.
[31] WANG Z J, CHEN R F. Anisotropic solution-adaptive viscous Cartesian grid method for turbulent flow simulation[J]. AIAA Journal, 2002, 40(10):1969-1978.
[32] FUJIMOTO K, FUJII K, WANG Z J. Improvements in the reliability and efficiency of body-fitted cartesian grid method:AIAA-2009-1173[R]. Reston:AIAA, 2009.
[33] 肖涵山, 刘刚, 陈作斌, 等. 基于STL文件的笛卡尔网格生成方法研究[J]. 空气动力学学报, 2006, 24(1):120-124, 136. XIAO H S, LIU G, CHEN Z B, et al. The adaptive Cartesian grid generation method based on STL file[J]. Acta Aerodynamica Sinica, 2006, 24(1):120-124, 136(in Chinese).
[34] 张来平, 常兴华, 段旭鹏, 等. 基于动态混合网格的不可压非定常流计算方法[J]. 力学学报, 2007, 39(5):577-586. ZHANG L P, CHANG X H, DUAN X P, et al. Implicit algorithm based on dynamic hybrid mesh for incompressible unsteady flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5):577-586(in Chinese).
[35] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[36] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流[J]. 航空学报, 2007, 28(1):46-51. TIAN S L, WU Y Z, XIA J. Simulation of flows past multi-body in relative motion with dynamic unstructured overset grid method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese).
[37] 夏健, 田书玲, 王江峰, 等. 三维动态非结构重叠网格Navier-Stokes方程并行算法[J]. 航空学报, 2008, 29(5):1118-1124. XIA J, TIAN S L, WANG J F, et al. Parallel computing strategy for 3D dynamic overset unstructured navier-stokes solver[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1118-1124(in Chinese).
[38] 沈志伟. 基于混合笛卡尔网格方法的非定常流动问题研究[D]. 南京:南京航空航天大学, 2016. SHEN Z W. Research on hybrid Cartesian grid method for simulating unsteady flows[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[39] HAM F E, LIEN F S, STRONG A B. A Cartesian grid method with transient anisotropic adaptation[J]. Journal of Computational Physics, 2002, 179(2):469-494.
[40] KEATS W A, LIEN F S. Two-dimensional anisotropic Cartesian mesh adaptation for the compressible Euler equations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11):1099-1125.
[41] WU Z N, LI K. Anisotropic Cartesian grid method for steady inviscid shocked flow computation[J]. International Journal for Numerical Methods in Fluids, 2003, 41(10):1053-1084.
[42] LI K, WU Z N. Nonet-Cartesian grid method for shock flow computations[J]. Journal of Scientific Computing, 2004, 20(3):303-329.
[43] SANG W M, SHI Y. Comparison of octree and omni-tree Cartesian grid for civil-plane high-lift model simulations[J]. Journal of Aircraft, 2013, 50(4):1099-1105.
[44] RUFFIN S M, ZAKI M, SEKHAR S. A normal ray refinement technique for Cartesian-grid based Navier-Stokes solvers[J]. International Journal of Computational Fluid Dynamics, 2012, 26(4):231-246.
[45] BREHM C, ASHTON N. Towards a viscous wall model for immersed boundary methods[C]//AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[46] BERGER MARSHA J, AFTOSMIS MICHAEL J. An ODE-based wall model for turbulent flow simulations[J]. AIAA Journal, 2018, 56(2):700-714.
[47] KALITIZIN G, IACCARINO G. Turbulence modeling in an immersed boundary RANS method[R]. CTR Annual Briefs, 2002.
[48] CAPIZZANO F. Automatic generation of locally refined Cartesian meshes:Data management and algorithms[J]. International Journal for Numerical Methods in Engineering, 2018, 113(5):789-813.
[49] BERNARDINI M, DE MODESTI D, PIROZZOLI S. On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows[J]. Computers & Fluids, 2016, 130:84-93.
[50] NAKAHASHI K. Aeronautical CFD in the age of Petaflops-scale computing:From unstructured to Cartesian meshes[J]. European Journal of Mechanics-B/Fluids, 2013, 40:75-86.
[51] 毕林. 基于自适应笛卡尔网格的稀薄跨尺度流动Boltzmann/Navier-Stokes耦合模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2019:37-38. BI L. Boltzmann/Navier-Stokes coupling simulation research on rare cross-scale flow based on adaptive Cartesian grid[D]. Mianyang:China Aerodynamics Research and Development Center,2019:37-38(in Chinese).
[52] 陈浩,毕林,华如豪,等.基于全线程树数据结构的笛卡尔网格高效生成技术[J/OL].航空学报, (2021-02-03)[2021-04-05]. https://kns.cnki.net/kcms/detail/11.1929.V.20210202.1415.002.html. CHEN H, BI L, HUA R H, et al. An efficient cartesian mesh generation method based on fully threaded tree data structure[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-02-03)[2021-04-05]. https://kns.cnki.net/kcms/detail/11.1929.V.20210202.1415.002.html (in Chinese).
[53] KHOKHLOV A M. Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations[J]. Journal of Computational Physics, 1998, 143(2):519-543.
[54] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17.
[55] 李鹏, 高振勋, 蒋崇文, 等. 重叠网格装配中的一种改进ADT搜索方法[J]. 北京航空航天大学学报, 2017, 43(6):1182-1190. LI P, GAO Z X, JIANG C W, et al. Improved ADT searching method in overlapping grid assembly[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6):1182-1190(in Chinese).
[56] SHEVTSOV M, SOUPIKOV A, KAPUSTIN A. Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes[J]. Computer Graphics Forum, 2007, 26(3):395-404.
[57] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9):509-517.
[58] MELTON J, BERGER M, AFTOSMIS M, et al. 3D applications of a Cartesian grid Euler method[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995.
[59] BOUMA W J, VANECEK G. Collision detection and analysis in a physically based simulation[C]//Eurogra Phies Workshop on Animation and Simulation, 1991.
[60] 成娟, 莫则尧, 徐小文, 等. 自适应结构网格并行应用支撑软件框架研究2011年度报告[J]. 科技创新导报, 2016, 13(9):161-162. CHENG J, MO Z Y, XU X W, et al. 2011 annual report for the program entitled "parallel adaptive structured mesh applications infrastruture"[J]. Science and Technology Innovation Herald, 2016, 13(9):161-162(in Chinese).
[61] BURSTREDDE C. P4est:Parallel AMR on forests of octrees[EB/OL]. 2010. http://www.p4est.org/.
[62] WANG Z J, KANNAN R. An overset adaptive Cartesian/prism grid method for moving boundary flow problems[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[63] NAGARAM M, LIOU M S. A Cartesian based body-fitted adaptive grid method for compressible viscous flows[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[64] 卢风顺, 庞宇飞, 齐龙, 等. 一种结构网格附面层网格自动生成方法:CN107798730A[P]. 2018-03-13. LU F S, PANG Y F, QI L, et al. Automatic generation method for boundary layer grid of structured grid:CN107798730A[P]. 2018-03-13(in Chinese).
[65] SPALDING D B. A single formula for the "law of the wall"[J]. Journal of Applied Mechanics, 1961, 28(3):455-458.
[66] KNOPP T. A new adaptive wall-function method for subsonic and transonic turbulent flows[R]. 2005.
Outlines

/