Review

Requirement of hypersonic aircraft power

  • ZUO Linxuan ,
  • ZHANG Chenlin ,
  • WANG Xiao ,
  • LU Enwei ,
  • ZHU Wei
Expand
  • AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2021-04-15

  Revised date: 2021-05-08

  Online published: 2021-05-26

Supported by

Ph.D Innovation Foundation of Shenyang Aircraft Design and Research Institute(SBJ-005)

Abstract

With the great progress of hypersonic technology, especially under the background of the gradual engineering orientation of the scramjet technology, the discussion of hypersonic aircraft and its power system appears frequently in recent years. In order to operate in a wide flight speed range, combined power systems based on different thermal cycle modes have been proposed. As a result, there appear plenty of schools of systems in the development of hypersonic aircraft power, which poses a great challenge to the selection of hypersonic aircraft power system. Based on a review of aircraft development history and hypersonic related development technologies, this paper expounds the conclusion that combined power is the main development direction of hypersonic aircraft power at this stage. Aiming at the requirements of hypersonic aircraft, the working principle, working characteristics, advantages and disadvantages of several hypersonic combined power systems are sorted out and analyzed. Finally, the challenges to the future hypersonic aircraft research by using the combined power system are also predicted, as with the increase of flight speed, the integration of hypersonic aircraft and power is imperative.

Cite this article

ZUO Linxuan , ZHANG Chenlin , WANG Xiao , LU Enwei , ZHU Wei . Requirement of hypersonic aircraft power[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(8) : 525798 -525798 . DOI: 10.7527/S1000-6893.2021.25798

References

[1] CHEN Z, HUANG F, JIN X H, et al. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere[J].Aerospace Science and Technology, 2021, 109:106418.
[2] WANG B, LIU W, CHENG Z T, et al. Active disturbance rejection attitude control for hypersonic vehicle based on intelligent stochastic robust optimization method[J].Complexity, 2020, 2020:1-13.
[3] ZHENG Y N. Aerodynamic shape design of hypersonic vehicles via interval-robust optimization method including geometric tolerances and multiple flight conditions[J].Journal of Aerospace Engineering, 2021, 34(3):04021017.
[4] NAVÓ À, BERGADA J M. Aerodynamic study of the NASA's X-43A hypersonic aircraft[J].Applied Sciences, 2020, 10(22):8211.
[5] SHOU Y X, XU B, LIANG X H, et al. Aerodynamic/reaction-jet compound control of hypersonic reentry vehicle using sliding mode control and neural learning[J].Aerospace Science and Technology, 2021, 111:106564.
[6] SURZHIKOV S T. Calculated analysis of experimental data on the aerothermodynamics of the hypersonic aircraft HIFiRE-1[J].Doklady Physics, 2020, 65(11):400-404.
[7] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston:AIAA,1994.
[8] LIU Q L, BACCARELLA D, LEE T. Review of combustion stabilization for hypersonic airbreathing propulsion[J].Progress in Aerospace Sciences, 2020, 119:100636.
[9] 黄伟, 夏智勋. 美国高超声速飞行器技术研究进展及其启示[J].国防科技, 2011, 32(3):17-20, 25. HUANG W, XIA Z X. Research progress and apocalypses on the American hypersonic vehicle technology[J].National Defense Science & Technology, 2011, 32(3):17-20, 25(in Chinese).
[10] 邓帆, 谭慧俊, 董昊, 等. 预冷组合动力高超声速空天飞机关键技术研究进展[J].推进技术, 2018, 39(1):1-13. DENG F, TAN H J, DONG H, et al. Progress on key technologies of hypersonic aerospace plane with pre-cooled combined propulsion[J].Journal of Propulsion Technology, 2018, 39(1):1-13(in Chinese).
[11] LI Q W, DOU M F, TAN B, et al. Electromagnetic-thermal integrated design optimization for hypersonic vehicle short-time duty PM brushless DC motor[J].International Journal of Aerospace Engineering, 2016, 2016:1-9.
[12] CHENG X J, FAN Y X, CAI D. Effect of fuel injection with mixer in TBCC Hyperburner:AIAA-2014-3747[R]. Reston:AIAA, 2014.
[13] 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J].航空科学技术, 2020, 31(11):3-6. LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J].Aeronautical Science & Technology, 2020, 31(11):3-6(in Chinese).
[14] 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J].航空科学技术, 2020, 31(11):7-13. LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J].Aeronautical Science & Technology, 2020, 31(11):7-13(in Chinese).
[15] YAN T, CAI Y L, WEI C S. Evasion-faced fast adaptive neural attitude control for generic hypersonic vehicles with structural and parametric uncertainties[J].Mathematical Problems in Engineering, 2021, 2021:1-12.
[16] WANG J, ZONG Q, HE X, et al. Adaptive finite-time control for a flexible hypersonic vehicle with actuator fault[J].Mathematical Problems in Engineering, 2013, 2013:1-10.
[17] CHONG Z Y, GUO J G, ZHAO B, et al. Finite-time integrated guidance and control system for hypersonic vehicles[J].Transactions of the Institute of Measurement and Control, 2021, 43(4):842-853.
[18] YE Y D. How does the rarefaction of the air affect hypersonic vehicles[J].Acta Mechanica Sinica, 2021, 37(1):18-19.
[19] WANG W J, WU Z P, WANG D H, et al. Hypersonic vehicle aerodynamic optimization using field metamodel-enhanced sequential approximate optimization[J].International Journal of Aerospace Engineering, 2021, 2021:1-12.
[20] HE J H, LIU Y B, LI S L, et al. Minimum-fuel ascent of hypersonic vehicle considering control constraint using the improved pigeon-inspired optimization algorithm[J].International Journal of Aerospace Engineering, 2020, 2020:1-21.
[21] WEI X, LIU L, WANG Y J, et al. Reentry trajectory optimization for a hypersonic vehicle based on an improved adaptive fireworks algorithm[J].International Journal of Aerospace Engineering, 2018, 2018:1-17.
[22] SHI L, YUAN S R, YAO B. Unconventionally designed tracking loop adaptable to plasma sheath channel for hypersonic vehicles[J].Sensors, 2020, 21(1):21.
[23] MA K, LI Y K, ZHU L, et al. Spike root oblique jet effect on drag and heat load reduction performance for hypersonic vehicles[J].Acta Astronautica, 2020, 177:588-603.
[24] GOU J J, YAN Z W, HU J X, et al. The heat dissipation, transport and reuse management for hypersonic vehicles based on regenerative cooling and thermoelectric conversion[J].Aerospace Science and Technology, 2021, 108:106373.
[25] VIVIANI A, APROVITOLA A, PEZZELLA G, et al. CFD design capabilities for next generation high-speed aircraft[J].Acta Astronautica, 2021, 178:143-158.
[26] YU C J, JIANG J, ZHEN Z Y, et al. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties[J].Aerospace Science and Technology, 2020, 107:106244.
[27] ZHANG D, CHENG F, TANG S, et al. Combined modeling technology for external flow field of wide-speed supersonic/hypersonic vehicles[J].Aerospace Science and Technology, 2020, 107:106323.
[28] ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J].Progress in Aerospace Sciences, 2020, 119:100646.
[29] KAZMAR R. Airbreathing hypersonic propulsion at Pratt & Whitney-overview:AIAA-2002-5144[R].. Reston:AIAA, 2005.
[30] MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight:AIAA-2005-3336[R]. Reston:AIAA, 2005.
[31] HUETER U, TURNER J. Rocket-based combined cycle activities in the Advanced Space Transportation Program office:AIAA-1999-2352[R]. Reston:AIAA, 1999.
[32] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J].力学进展, 2009, 39(6):716-739. WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J].Advances in Mechanics, 2009, 39(6):716-739(in Chinese).
[33] 龚春林, 陈兵. 组合循环动力在水平起降天地往返飞行器上的应用[J].科技导报, 2020, 38(12):25-32. GONG C L, CHEN B. Application analysis of combined cycle engine in horizontal take-off and landing aerospace vehicles[J].Science & Technology Review, 2020, 38(12):25-32(in Chinese).
[34] 张留欢, 杜泉, 张蒙正. RBCC发动机火箭-冲压模态理想热力循环优化分析[J].火箭推进, 2016, 42(3):21-25, 32. ZHANG L H, DU Q, ZHANG M Z. Optimum analysis on ideal thermodynamic cycle of RBCC engine at special rocket-ramjet mode[J].Journal of Rocket Propulsion, 2016, 42(3):21-25, 32(in Chinese).
[35] 张蒙正, 路媛媛. 火箭冲压组合动力系统研发再思考[J].推进技术, 2018, 39(10):2219-2226. ZHANG M Z, LU Y Y. Consideration once again to rocket ramjet combined engine[J].Journal of Propulsion Technology, 2018, 39(10):2219-2226(in Chinese).
[36] 唐硕, 龚春林, 陈兵. 组合动力空天飞行器关键技术[J].宇航学报, 2019, 40(10):1103-1114. TANG S, GONG C L, CHEN B. The key technologies for aerospace with combined cycle engine[J].Journal of Astronautics, 2019, 40(10):1103-1114(in Chinese).
[37] 佘文学, 刘凯, 乔鸿. 组合动力空天飞行器制导技术发展分析[J].战术导弹技术, 2020(5):52-65. SHE W X, LIU K, QIAO H. Development analysis of guidance technology for aerospace vehicle based on combination engine[J].Tactical Missile Technology, 2020(5):52-65(in Chinese).
[38] 张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J].火箭推进, 2009, 35(1):1-8, 15. ZHANG M Z, LI P, CHEN Z K. Challenge and perspective of combined cycle propulsion system[J].Journal of Rocket Propulsion, 2009, 35(1):1-8, 15(in Chinese).
[39] 张冬青, 宋文艳, 柴政, 等. 组合循环发动机飞机/发动机性能一体化分析[J].航空动力学报, 2017, 32(10):2498-2508. ZHANG D Q, SONG W Y, CHAI Z, et al. Aircraft/engine performance integrated analysis on combined cycle engine[J].Journal of Aerospace Power, 2017, 32(10):2498-2508(in Chinese).
[40] 张岩, 朱韶华, 刘刚, 等. 双模态冲压发动机中的模态转换研究综述[J].推进技术, 2013, 34(12):1719-1728. ZHANG Y, ZHU S H, LIU G, et al. An overview on mode transition in dual mode ramjet[J].Journal of Propulsion Technology, 2013, 34(12):1719-1728(in Chinese).
[41] 王浩苏, 尕永婧, 黄辉, 等. 国内外先进推进技术发展综述[J].宇航总体技术, 2019, 3(2):62-70. WANG H S, GA Y J, HUANG H, et al. Progress on the advanced propulsion technologies of launch vehicles[J].Astronautical Systems Engineering Technology, 2019, 3(2):62-70(in Chinese).
[42] 金捷, 陈敏, 刘玉英. 涡轮基组合循环发动机[M]. 北京:国防工业出版社, 2019:1-2. JIN J, CHEN M, LIU Y Y. Turbine based combined cycle engine[M]. Beijing:National Defense Industry Press, 2019:1-2(in Chinese).
[43] 蔡依雯, 金志光, 周建兴, 等. 一种多热力循环组合发动机进气道设计方案[J].航空学报, 2020, 41(11):123745. CAI Y W, JIN Z G, ZHOU J X, et al. Design scheme of combined multiple thermodynamic cycle engine inlet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123745(in Chinese).
[44] 张华军, 郭荣伟, 李博. TBCC进气道研究现状及其关键技术[J].空气动力学学报, 2010, 28(5):613-620. ZHANG H J, GUO R W, LI B. Research status of TBCC inlet and its key technologies[J].Acta Aerodynamica Sinica, 2010, 28(5):613-620(in Chinese).
[45] 向先宏, 钱战森, 张铁军. TBCC进气道模态转换气动技术研究综述[J].航空科学技术, 2017, 28(1):10-18. XIANG X H, QIAN Z S, ZHANG T J. An overview of turbine-based combined cycle(TBCC) inlet mode transition aerodynamic technology[J].Aeronautical Science & Technology, 2017, 28(1):10-18(in Chinese).
[46] 刘洋, 何国强, 刘佩进, 等. RBCC组合循环推进系统研究现状和进展[J].固体火箭技术, 2009, 32(3):288-293. LIU Y, HE G Q, LIU P J, et al. Present situation and progress of investigation on rocket based combined cycle(RBCC)propulsion system[J].Journal of Solid Rocket Technology, 2009, 32(3):288-293(in Chinese).
[47] 闫晓东, 贾晓娟, 吕石. RBCC动力飞行器等动压爬升方法[J].固体火箭技术, 2013, 36(6):711-714. YAN X D, JIA X J, LV S. An ascent trajectory design method with constant dynamic pressure for RBCC powered vehicle[J].Journal of Solid Rocket Technology, 2013, 36(6):711-714(in Chinese).
[48] 吕翔, 何国强, 刘佩进. RBCC飞行器爬升段轨迹设计方法[J].航空学报, 2010, 31(7):1331-1337. LU X, HE G Q, LIU P J. Ascent trajectory design method for RBCC-powered vehicle[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1331-1337(in Chinese).
[49] 陈婷婷, 孙春贞. RBCC飞行器上升段飞行走廊规划方法[J].兵工自动化, 2019, 38(12):50-53. CHEN T T, SUN C Z. Flight corridor planning method of RBCC ascent[J].Ordnance Industry Automation, 2019, 38(12):50-53(in Chinese).
[50] 龚春林, 韩璐. RBCC可重复使用运载器上升段轨迹优化设计[J].固体火箭技术, 2012, 35(3):290-295. GONG C L, HAN L. Optimization of ascent trajectory for RBCC-powered RLV[J].Journal of Solid Rocket Technology, 2012, 35(3):290-295(in Chinese).
[51] 王厚庆, 何国强, 刘佩进. 以RBCC为动力的巡航飞行器有效载荷质量敏感性分析[J].固体火箭技术, 2007, 30(2):87-89, 93. WANG H Q, HE G Q, LIU P J. Sensitivity analysis on payload mass of RBCC-powered cruise vehicle[J].Journal of Solid Rocket Technology, 2007, 30(2):87-89, 93(in Chinese).
[52] 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J].推进技术, 2017, 38(2):298-305. WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J].Journal of Propulsion Technology, 2017, 38(2):298-305(in Chinese).
[53] 刘君,袁化成,葛宁. 串联式TBCC进气道模态转换模拟器设计及其特性分析[J].航空学报, 2016, 37(12):3675-3684. LIU J, YUAN H C, GE N. Design and flow characteristics analysis of mode transition simulator for tandem type TBCC inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3675-3684.
[54] 金捷, 陈敏. 涡轮冲压组合动力装置特点及研究进展[J].航空制造技术, 2014, 57(9):32-35. JIN J, CHEN M. Brief introduction on technology development of turbine based combined cycle engine[J].Aeronautical Manufacturing Technology, 2014, 57(9):32-35(in Chinese).
[55] 马松, 林鹏, 左林玄, 等. 并联TBCC动力对高超声速飞行器性能的影响[J].国防科技大学学报, 2019, 41(2):1-7. MA S, LIN P, ZUO L X, et al. Influence of over-under TBCC on the performance of hypersonic aircraft[J].Journal of National University of Defense Technology, 2019, 41(2):1-7(in Chinese).
[56] 朱伟, 王霄, 华正旭, 等. 宽速域组合动力TBCC新型三维内转式进气道设计分析[J].飞机设计, 2019, 39(3):13-17, 38. ZHU W, WANG X, HUA Z X, et al. The design and analysis of wide speed range turbine based combine cycle three-dimensional inward turning inlet[J].Aircraft Design, 2019, 39(3):13-17, 38(in Chinese).
[57] 王巍巍, 郭琦, 曾军, 等. 国外TBCC发动机发展研究[J].燃气涡轮试验与研究, 2012, 25(3):58-62. WANG W W, GUO Q, ZENG J, et al. TBCC technology research abroad[J].Gas Turbine Experiment and Research, 2012, 25(3):58-62(in Chinese).
[58] 张明阳, 王占学, 刘增文, 等. Ma4一级内并联式TBCC发动机模态转换性能分析[J].推进技术, 2017, 38(2):315-322. ZHANG M Y, WANG Z X, LIU Z W, et al. Analysis of mode transition performance for a Mach 4 over-under TBCC engine[J].Journal of Propulsion Technology, 2017, 38(2):315-322(in Chinese).
[59] 宋自航, 唐海龙, 陈敏. 高超声速并联TBCC总体性能分析与模态转换仿真[J].航空发动机, 2019, 45(1):33-39. SONG Z H, TANG H L, CHEN M. Overall performance analysis and modal conversion simulation of hypersonic parallel TBCC[J].Aeroengine, 2019, 45(1):33-39(in Chinese).
[60] 郭荣荣, 金志光, 李猛, 等. 二元外并联RBCC进气道变几何方案研究[J].推进技术, 2017, 38(3):481-488. GUO R R, JIN Z G, LI M, et al. Investigation of a 2D variable geometry over/under type inlet for RBCC[J].Journal of Propulsion Technology, 2017, 38(3):481-488(in Chinese).
[61] 张鹏峰. 国外RBCC组合循环发动机发展趋势及关键技术[J].飞航导弹, 2013(8):68-71. ZHANG P F. Development trend and key technology of foreign RBCC combined cycle engine[J].Aerodynamic Missile Journal, 2013(8):68-71(in Chinese).
[62] CARL EHRLICH J. Early studies of RBCC applications and lessons learned for today:AIAA-2000-3105[R]. Reston:AIAA, 2000.
[63] 王亚军. 基于热力调节具有宽适应性的RBCC亚燃模态研究[D]. 西安:西北工业大学, 2017. WANG Y J. Investigation of ramjet mode in RBCC for wide adaptability based on thermal adjustment[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese).
[64] 龚春林, 韩璐, 谷良贤. 适应于RBCC运载器的轨迹优化建模研究[J].宇航学报, 2013, 34(12):1592-1598. GONG C L, HAN L, GU L X. Research on modeling of trajectory optimization for RBCC-powered RLV[J].Journal of Astronautics, 2013, 34(12):1592-1598(in Chinese).
[65] 薛瑞, 胡春波, 吕翔, 等. 两级入轨RBCC等动压助推弹道设计与推进剂流量分析[J].固体火箭技术, 2013, 36(2):155-160. XUE R, HU C B, LV X, et al. RBCC constant dynamic pressure booster trajectory design and propellant mass flowrate analysis for TSTO transportation system[J].Journal of Solid Rocket Technology, 2013, 36(2):155-160(in Chinese).
[66] 文科, 李旭昌, 马岑睿, 等. 国外高超声速组合推进技术概述[J].航天制造技术, 2011(1):4-7, 20. WEN K, LI X C, MA C R, et al. Hypersonic combined-cycle propulsion technology based on scramjet[J].Aerospace Manufacturing Technology, 2011(1):4-7, 20(in Chinese).
[67] SPRINGER A. Historic trends in RLV design:Lessons applicable to future concepts:AIAA-2003-4589[R]. Reston:AIAA, 2003.
[68] 刘凯. 涡轮增压固体冲压发动机匹配规律和性能研究[D]. 西安:西北工业大学, 2018. LIU K. Investigation on matching law and performance in turbocharged solid propellant ramjet[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese).
[69] 李永洲, 李哲, 李光熙, 等. ATR/冲压组合动力高超声速飞行器性能分析[J].火箭推进, 2018, 44(3):6-11. LI Y Z, LI Z, LI G X, et al. Performance analysis of hypersonic aircraft with ATR/ramjet combined power[J].Journal of Rocket Propulsion, 2018, 44(3):6-11(in Chinese).
[70] 南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J].火箭推进, 2008, 34(6):31-35. NAN X Y, WANG S H, LI P. Investigation on status and prospect of air turbine rocket[J].Journal of Rocket Propulsion, 2008, 34(6):31-35(in Chinese).
[71] PAN H L, ZHOU P. Performance analysis of liquid air turborocket:AIAA-2008-0070[R]. Reston:AIAA, 2008.
[72] BOSSARD J, CHRISTENSEN K, FEDUN M. Return of the solid fuel gas generator ATR:AIAA-1987-1997[R]. Reston:AIAA, 1987.
[73] SIEBENHAAR A, BOGAR T. Integration and vehicle performance assessment of the aerojet "TriJet" combined-cycle engine:AIAA-2009-7420[R]. Reston:AIAA, 2009.
[74] BULMAN M, SIEBENHAAR A. Combined cycle propulsion:Aerojet innovations for practical hypersonic vehicles:AIAA-2011-2397[R]. Reston:AIAA, 2011.
[75] LONGSTAFF R, BOND A. The SKYLON project:AIAA-2011-2244[R]. Reston:AIAA, 2011.
[76] DAVIES R, BOND A. The SKYLON spaceplane[C]//IEE Colloquium on Satellite Launch Vehicles, 1999.
[77] 牛文, 李文杰. SKYLON飞行器与SABRE发动机研究[J].飞航导弹, 2013(3):70-75. NIU W, LI W J. SKYLON aircraft and SABRE engine research[J].Aerodynamic Missile Journal, 2013(3):70-75(in Chinese).
[78] 陈静敏, 蒋妮, 郑日恒. SABRE发动机吸气模式下的总体性能分析[C]//第五届冲压发动机会议, 2015. CHEN J M, JIANG N, ZHENG R H. Overall performance analysis of SABRE engine in suction mode[C]//The 5th Ramjet Conference, 2015(in Chinese).
[79] 尤延铖, 安平. 欧洲的高超声速推进项目及其项目管理[J].燃气涡轮试验与研究, 2013, 26(6):1-7. YOU Y C, AN P. European hypersonic projects and project management[J].Gas Turbine Experiment and Research, 2013, 26(6):1-7(in Chinese).
[80] 宋文艳, 张冬青, 吕重阳. 多种组合动力方案性能对比研究[J].实验流体力学, 2018, 32(5):19-28. SONG W Y, ZHANG D Q, LYU C Y. Compared study of performances of combined cycle engines[J].Journal of Experiments in Fluid Mechanics, 2018, 32(5):19-28(in Chinese).
[81] HUETER U. Advanced reusable transportation technologies project overview:AIAA-1996-4603[R]. Reston:AIAA, 1996.
[82] 林鹏, 左林玄, 王霄, 等. 未来作战飞机飞发一体化技术的思考[J].航空动力, 2018(2):52-57. LIN P, ZUO L X, WANG X, et al. Discussion on aircraft/engine integration technology of future combat aircraft[J].Aerospace Power, 2018(2):52-57(in Chinese).
[83] 罗世彬. 高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D]. 长沙:国防科学技术大学, 2004. LUO S B. Research on airframe/engine integration issues and multidisciplinary design optimization methods for airbreathing hypersonic vehicle[D]. Changsha:National University of Defense Technology, 2004(in Chinese).
Outlines

/