Material Engineering and Mechanical Manufacturing

Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties

  • WANG Yueyi ,
  • YAN Dingxiang ,
  • LI Zhongming
Expand
  • 1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

Received date: 2021-03-18

  Revised date: 2021-05-21

  Online published: 2021-05-21

Supported by

National Natural Science Foundation of China (21704070, 21878194, 51721091)

Abstract

Lightweight and heat resistant foam with broadband Microwave Absorption(MA) has attracted great attention in the field of aerospace stealth technology, and the development of MA foam based on space-durable polyimide(PI) is very promising. Herein, a Carbon Nanotube(CNT)/PI foam is developed by freezing and drying water-soluble polyamic acid and CNT dispersion with the aid of polyvinyl pyrrolidone. The resulted CNT/PI foam exhibits impressive MA performance, with the minimum reflection loss reaching -44.7 dB and effective absorption bandwidth reaching 7.4 GHz. It was found that the band of RL ≤ -5 dB can cover X and Ku bands simultaneously, which demonstrates that the foam manufactured can meet the requirements of actual application.

Cite this article

WANG Yueyi , YAN Dingxiang , LI Zhongming . Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(7) : 425531 -425531 . DOI: 10.7527/S1000-6893.2021.25531

References

[1] 罗发,周万城,焦桓.高温吸波材料研究现状[J]. 2002, 1(1):8-11. LUO F, ZHOU W C, JIAO H. Current study of high temperature radar absorbing materials[J]. Aerospace Materials&Technology, 2002, 1(1):8-11(in Chinese).
[2] 姚琪,张振林,宫剑.耐高温/隐身/透波一体化天线罩材料的研究进展[J].当代化工研究, 2018, 1(12):6-7. YAO Q, ZHANG Z L, GONG J. Research progress of high temperature resistant/stealth/wave transmitting integrated radome materials[J]. Modern Chemical Research, 2018, 1(12):6-7(in Chinese).
[3] 李萍,陈绍杰,朱珊.隐身复合材料的研究和发展[J].飞机设计, 1994, 1(1):31-36. LI P, CHEN S J, ZHU S. Research and development of stealth composites[J]. Aircraft Design, 1994, 1(1):31-36(in Chinese).
[4] 郭霄,杨青真,文振华,等.吸波材料脱落对球面收敛喷管电磁散射特性的影响[J].航空学报, 2020,42(6):224466. GUO X, YANG Q Z, WEN Z H, et al. Research on the influence of RAM abscission on the electromagnetic scattering characteristic of cavity[J]. Acta Aeronautica et Astronautica Sinica, 2020,42(6):224466(in Chinese).
[5] 丁冬海,罗发,周万城.高温雷达吸波材料研究现状与展望[J].无机材料学报, 2014, 29(5):461-469. DING D H, LUO F, ZHOU W C. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials, 2014, 29(5):461-469(in Chinese).
[6] LIU Y, HE D, DUBRUNFAUT O, et al. GO-CNTs hybrids reinforced epoxy composites with porous structure as microwave absorbers[J]. Composites Science and Technology, 2020, 200(12):108450.
[7] KONG L, YIN X W, YUAN X Y, et al. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites[J]. Carbon, 2014, 73(7):185-193.
[8] YUAN H, XIONG Y L, SHEN Q, et al. Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in X-band[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107(4):334-341.
[9] GUO C, ITOH K, SUN D, et al. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding[J]. ACS Applied Nano Materials, 2020, 3(6):5944-5954.
[10] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in polyimide-based materials for space applications[J]. Advanced Materials, 2019, 31(18):e1807738.
[11] WILLIAMS J C, NGUYEN B N, MCCORKLE L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity[J]. ACS Applied Materials&Interfaces, 2017, 9(2):1801-1809.
[12] LI Y, PEI X, SHEN B, et al. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding[J]. RSC Advance, 2015, 5(31):24342-24351.
[13] GU W H, WANG G H, ZHOU M, et al. Polyimide-based foams:fabrication and multifunctional applications[J]. ACS Applied Materials&Interfaces, 2020, 12(43):48246-48258.
[14] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small, 2018, 14(45):1802479.
[15] DAI Y, WU X, LIU Z, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites Part B:Engineering, 2020, 200(11):108263.
[16] PU L, LI S, ZHANG Y, et al. Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption[J]. Journal of Materials Chemistry C, 2021, 200(6):108263.
[17] YIN L, CHEN T, LIU S, et al. Preparation and microwave-absorbing property of BaFe12O19 nanoparticles and BaFe12O19/Fe3C/CNTs composites[J]. RSC Advance, 2015, 5(111):91665-91669.
[18] ENDO M, TAKEUCHI K, HIRAOKA T, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres[J]. Journal of Physics&Chemistry of Solids, 1997, 58(11):1707-1712.
[19] LUONG N D, HIPPI U, KORHONEN J T, et al. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization[J]. Polymer, 2011, 52(23):5237-5242.
[20] ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142(2):245-253.
[21] CHEN Y, ZHANG H B, YANG Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Material, 2016, 26(3):447-455.
[22] 郑天亮,张璋,王轩,等.聚苯胺中空球的改性与电磁特性[J].航空学报, 2007, 28(6):1532-1536. ZHENG T L, ZHANG Z, WANG X, et al. Modifing of PANI hollow microspheres and electromagnetic property[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1532-1536(in Chinese).
[23] LV H, LIANG X, CHENG Y, et al. Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance[J]. ACS Applied Materials&Interfaces, 2015, 7(8):4744-4750.
[24] XU J J, LIU J W, CHE R C, et al. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells[J]. Nanoscale, 2014, 6(11):5782-5790.
[25] WANG Y Y, SUN W J, LIN H, et al. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids[J]. Composite Part B:Engineering, 2020, 199(10):108309.
[26] 李国显,王涛,薛海荣,等.石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J].航空学报, 2011, 32(9):1732-1739. LI G X, WANG T, XUE H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties outlook of high temperature radar absorbing materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1732-1739(in Chinese).
[27] ZHANG X J, ZHU J Q, YIN P G, et al. Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading[J]. Advanced Functional Material, 2018, 28(49):1800761.
[28] HAN M, YIN X, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A, 2014, 2(39):16403-16409.
[29] LV H L, ZHANG H Q, ZHAO J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures[J]. Nano Research, 2016, 9(6):1813-1822.
[30] KONG L, WANG C, YIN X W, et al. Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer[J]. Journal of Materials Chemistry C, 2017, 5(30):7479-7488.
[31] XU H L, YIN X W, FAN X M, et al. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance[J]. Carbon, 2019, 148(8):421-429.
Outlines

/