Material Engineering and Mechanical Manufacturing

Simulation analysis of deformation behavior and resilience of Ni-based alloy canted coil spring for dynamic seal

  • YU Yuxi ,
  • ZHANG Weibin ,
  • SUN Yi ,
  • CONG Minghui ,
  • ZHU Jian ,
  • SONG Jingyuan
Expand
  • 1. College of Materials, Xiamen University, Xiamen 361005, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2021-03-18

  Revised date: 2021-05-20

  Online published: 2021-05-20

Supported by

National Natural Science Foundation of China (51675452); Joint Fund for Equipment Pre-Research and Aerospace Science and Technology (6141B061012)

Abstract

The sealing section of the reentry aircraft control surface and ramjet is mainly sealed by the dynamic sealing structure. As an important factor affecting the dynamic sealing performance of the sealing structure, the canted coil spring is used as the resilient element of the dynamic sealing structure to provide resilience to compensate for gap changes, and is made of the age-strengthened Ni-based alloy Inconel X-750. To study the force and deformation behavior of the canted coil spring, a parametric modeling of the spring was established by the parametric equation. The structural static simulation of the spring was carried out by the finite element analysis software ANSYS, and the influence of the structural parameters of the spring on the spring's force was discussed. A comparison of the results of the simulation analysis with the test results at room temperature shows that the force-compression curve between them is almost the same, proving the reliability of the finite element simulation analysis. In compressing the canted coil spring to 50% of its height, The simulation results show that, the force of the canted coil spring tends to decrease with the increase of the height, width and cant amplitude, while the force increases with the increase of the pitch and wire diameter. The relationship between the force and wire diameter shows a high-order nonlinear relationship. The temperature affects the resilience of the spring by affecting the elasticity modulus of Inconel X-750.

Cite this article

YU Yuxi , ZHANG Weibin , SUN Yi , CONG Minghui , ZHU Jian , SONG Jingyuan . Simulation analysis of deformation behavior and resilience of Ni-based alloy canted coil spring for dynamic seal[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(7) : 425527 -425527 . DOI: 10.7527/S1000-6893.2021.25527

References

[1] 罗世彬,吴瑕,魏才盛.可重复使用飞行器的保性能姿态跟踪控制方法[J].航空学报, 2021, 42(11):524660. LUO S B, WU X, WEI C S. A novel attitude tracking control with guaranteed performance for reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):524660(in Chinese).
[2] 李保江,邵济明,王长焕,等.天地往返飞行器大开口舱门关键技术及其解决途径[J].航空学报, 2016, 37(增刊1):8-15. LI B J, SHAO J M, WANG C H, et al. Key technologies and solutions for large extensible door of re-entry space vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(Sup.1):8-15(in Chinese).
[3] DUNLAP P, FINKBEINER J, STEINETZ B, et al. Design study of wafer seals for future hypersonic vehicles[C]//41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit. Reston:AIAA, 2005:4153.
[4] 周印佳,张志贤,付新卫,等.再入飞行器烧蚀热防护一体化计算方法[J].航空学报, 2021, 42(7):124520. ZHOU Y J, ZHANG Z X, FU X W, et al. Integrated computing method for ablative thermal protection system of reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124520(in Chinese).
[5] 韩硕.高温热密封结构设计及试验验证[D].哈尔滨:哈尔滨工业大学, 2019:16-20. HAN S. Structural design and experimental verification of high temperature seal[D]. Harbin:Harbin Institute of Technology, 2019:16-20(in Chinese).
[6] 薛云嘉,郭安然,刘家臣.新型高温基线柔性动密封结构的设计[C]//中国硅酸盐学会特种陶瓷分会第十九届全国高技术陶瓷学术年会摘要集.北京:中国硅酸盐学会特种陶瓷分会, 2016:102-103. XUE Y J, GUO A R, LIU J C. Design of a new high-temperature baseline flexible dynamic seal structure[C]//Summary of the 19th National High-Tech Ceramics Annual Conference of the Special Ceramics Branch of the Chinese Ceramic Society. Beijing:Special Ceramics Branch of Chinese Ceramic Society, 2016:102-103(in Chinese).
[7] 景媛媛.三维编织密封件气密性能研究与建模[D].天津:天津工业大学, 2017:2-4. JING Y Y.Research and modeling of air-tight performance of 3D braided seals[D]. Tianjin:Tianjin Polytechnic University, 2017:2-4(in Chinese).
[8] 王建平,马世豪,王东,等.斜圈弹簧非线性刚度及其结构参数影响分析[J].机械科学与技术, 2019, 38(1):30-36. WANG J P, MA S H, WANG D, et al. Nonlinear stiffness and analysis of influencing factor of canted coil spring[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(1):30-36(in Chinese).
[9] KAOUA S A, TAIBI K, BENGHANEM N, et al. Numerical modelling of twin helical spring under tensile loading[J]. Applied Mathematical Modelling, 2011, 35(3):1378-1387.
[10] 颜燕琼,刘宏昭.高压断路器螺旋弹簧触指分析及计算[J].机械科学与技术, 2016, 35(7):1059-1064. YAN Y Q, LIU H Z. Analysis and calculation of the screw spring contact for high-voltage circuit breaker[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(7):1059-1064(in Chinese).
[11] 刘三星,张焕亮,袁鸿.斜圈弹簧的实验研究及初步设计[C]//2010中国仪器仪表学术产业大会论文集.北京:仪器仪表学会, 2010:5-7. LIU S X, ZHANG H L, YUAN H. Experimental research and preliminary design of canted coil spring[C]//Proceedings of the 2010 China Instrument and Meter Academic Industry Conference. Beijing:China Instrument and Control Society, 2010:5-7(in Chinese).
[12] SCHRIEFER T, HOFMANN M, RAUH H, et al. Parameter study on the electrical contact resistance of axially canted coil springs for high-current systems[C]//2018 IEEE Holm Conference on Electrical Contacts. Piscataway:IEEE Press, 2018:235-241.
[13] PARK J E, LEE S H. Study on the friction characteristics of canted coil spring for gas insulated circuit breaker[C]//20153rd International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Piscataway:IEEE Press, 2015:407-409.
[14] CHEN L, WEN W D, CUI H T, et al. Yield anisotropy and tension/compression asymmetry of a Ni3Al based intermetallic alloy[J]. Chinese Journal of Aeronautics, 2013, 26(3):801-806.
[15] 巴全坤,王维民,姜鑫,等.高温基线密封编织弹簧管的建模与仿真[J].宇航材料工艺, 2019, 49(3):15-20. BA Q K, WANG W M, JIANG X, et al. Modeling and simulation of braided spring tubes in high temperature baseline seals[J]. Aerospace Materials&Technology, 2019, 49(3):15-20(in Chinese).
[16] 王衍,胡琼,肖业祥,等.超高速干气密封扰流效应及抑扰机制[J].航空学报, 2019, 40(10):123072. WANG Y, HU Q, XIAO Y X, et al. Turbulence effect and suppression mechanism of dry gas seal at ultra-high speeds[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):123072(in Chinese).
[17] 黄红岩,苏力军,雷朝帅,等.可重复使用热防护材料应用与研究进展[J].航空学报, 2020, 41(12):023716. HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials:application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):023716(in Chinese).
[18] Bal Seal Engineering Inc. Patent issued for multi deflection canted coil springs and related methods:USPTO 10598241[P]. 2020-04-07.
[19] OSWALD J, MULLEN R, STEINETZ B, et al. Modeling of canted coil springs and knitted spring tubes as high temperature seal preload devices[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit. Reston:AIAA, 2005:4156.
[20] 解维华,韩国凯,孟松鹤,等.返回舱/空间探测器热防护结构发展现状与趋势[J].航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022792(in Chinese).
[21] 张亚辉.热处理工艺对InconelX-750合金的组织和性能的影响研究[D].北京:钢铁研究总院, 2019:46-50. ZHANG Y H. Effect of heat treatment process on microstructure and properties of inconel X-750 alloy[D]. Beijing:Central Iron&Steel Research Institute, 2019:46-50(in Chinese).
[22] CHENG S C, LIN Z J, YANG G, et al. Effect of heat treatment on the properties of inconel X-750[J]. Key Engineering Materials, 2005, 297-300:1220-1222.
[23] 王安恒,薛红前,杨艳丽,等.基于中性层偏移的Z型材滚弯成形回弹预测[J].航空学报, 2019, 40(12):423127. WANG A H, XUE H Q, YANG Y L, et al. Springback prediction for Z-shaped profiles in roll bending process based on neutral layer shift[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423127(in Chinese).
[24] 殷雅俊,范钦珊.材料力学[M]. 3版.北京:高等教育出版社, 2019:121-122. YIN Y J, FAN Q S. Mechanics of materials[M]. 3rd ed. Beijing:Higher Education Press, 2019:121-122(in Chinese).
[25] 诺尔曼E.道林.工程材料力学行为:变形、断裂与疲劳的工程方法[M].江树勇,张艳秋,译.北京:机械工业出版社, 2016:632-633. Norman E. Dowling. Mechanical behavior of materials:Engineering methods for deformation, fracture, and fatigue[M]. Jiang S Y, Zhang Y Q, translated. Beijing:China Machine Press, 2016:632-633.
Outlines

/