Material Engineering and Mechanical Manufacturing

Measuring crystallographic orientation of Ni-based single-crystal materials using ultrasonic velocity method

  • ZHANG Chenxin ,
  • YAO Song ,
  • LI Xiongbing ,
  • YANG Yang ,
  • HAN Jun
Expand
  • 1. School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China;
    2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    3. Quanzhou Institute of Equipment Manufacturing, Chinese Academy of Sciences, Quanzhou 362200, China

Received date: 2021-03-01

  Revised date: 2021-05-11

  Online published: 2021-05-10

Supported by

National Natural Science Foundation of China (92060111,51801199); Fundamental Research Funds for the Central Universities of Central South University (502221908)

Abstract

The single-crystal material of the Ni-based superalloy has excellent comprehensive mechanical properties. The deviation of crystal orientation is one of the main defects in single-crystal blades. In this work, ultrasonic wave velocities are used to evaluate the crystallographic orientation of the Ni single-crystal material. The orientation-dependent refracted field is measured using a linear ultrasonic phased array transducer placed beneath the sample at three in-plane orientations. The refracted field is connected to the crystallographic orientation by reconstructing the velocity surface as a function of Wigner-D function. The proposed method can evaluate three complete Euler angles at one time. To verify the effectiveness of the method, the Ni-based single-crystal samples with different crystal orientations were prepared for ultrasonic measurement and volume average orientation evaluation. A comparison with the Electron Backscattered Diffraction (EBSD) measurements shows that the evaluation error rate of the proposed method is within 3.69%.

Cite this article

ZHANG Chenxin , YAO Song , LI Xiongbing , YANG Yang , HAN Jun . Measuring crystallographic orientation of Ni-based single-crystal materials using ultrasonic velocity method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(7) : 425431 -425431 . DOI: 10.7527/S1000-6893.2021.25431

References

[1] LETHBRIDGE Z A D, WALTON R I, MARMIER A S H, et al. Elastic anisotropy and extreme Poisson's ratios in single crystals[J]. Acta Materialia, 2010, 58(19):6444-6451.
[2] 李茜,张福禄,赵子华.镍基单晶/柱晶高温合金超高周疲劳研究进展[J].航空学报, 2021, 42(5):524340. LI Q, ZHANG F L, ZHAO Z H. Very high cycle fatigue of nickel-based single-crystal and directionally solidified superalloys:Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese).
[3] 张军,黄太文,刘林,等.单晶高温合金凝固特性与典型凝固缺陷研究[J].金属学报, 2015, 51(10):1163-1178. ZHANG J, HUANG T W, LIU L, et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51(10):1163-1178(in Chinese).
[4] 赵新宝,刘林,杨初斌,等.镍基单晶高温合金凝固缺陷研究进展[J].材料工程, 2012, 40(1):93-98. ZHAO X B, LIU L, YANG C B, et al. Advance in research of casting defects of directionally solidified nickel-based single superalloys[J]. Journal of Materials Engineering, 2012, 40(1):93-98(in Chinese).
[5] 荆甫雷,王荣桥,胡殿印,等.单晶高温疲劳损伤参量的选取与寿命建模[J].航空学报, 2016, 37(9):2749-2756. JING F L, WANG R Q, HU D Y, et al. Damage parameter determination and life modeling for high temperature fatigue of single crystals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2749-2756(in Chinese).
[6] 温志勋,岳珠峰,于庆民,等.镍基单晶合金CT试样裂纹尖端应力结构及晶体滑移特性[J].航空学报, 2007, 28(4):964-970. WEN Z X, YUE Z F, YU Q M, et al. Characteristics of crack-tip stress structure and crystal slipping in nickel-base singlesupperalloy CT specimens[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):964-970(in Chinese).
[7] 岳珠峰,于庆民,温志勋.镍基单晶涡轮叶片结构强度设计[M].北京:科学出版社, 2008. YUE Z F, YU Q M, WEN Z X. Structural strength design of nickel based single crystal turbine blade[M]. Beijing:Science Press, 2008(in Chinese).
[8] 中国航空工业总公司.单晶叶片晶体取向的测定X射线背射劳厄照相法:HB 6742-1993[S].北京:中国标准出版社, 1994. Aviation Industry Corporation of China. Determination ofcrystal orientation of single crystal blade by X-ray backscatter Laue photography:HB 6742-1993[S]. Beijing:Standards Press of China, 1994(in Chinese).
[9] ENGLER O, RANDLE V. Introduction to texture analysis[M]. Boca Raton:CRC Press, 2010:64-66, 280-292.
[10] BACON G E. Neutron diffraction[M]. 3rd ed. Oxford:Clarendon Press, 1975.
[11] ABA-PEREA P E, PIRLING T, WITHERS P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys[J]. Materials&Design, 2016, 89:856-863.
[12] 孙侠生,肖迎春.飞机结构健康监测技术的机遇与挑战[J].航空学报, 2014, 35(12):3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3199-3212(in Chinese).
[13] SCHMERR L W. Fundamentals of ultrasonic nondestructive evaluation[M]. Cham:Springer International Publishing, 2016:79-84.
[14] LI Y, THOMPSON R B. Relations between elastic constants Cij and texture parameters for hexagonal materials[J]. Journal of Applied Physics, 1990, 67(5):2663-2665.
[15] MARKHAM M F. Measurement of the elastic constants of fibre composites by ultrasonics[J]. Composites, 1970, 1(3):145-149.
[16] ROKHLIN S I, WANG W. Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials[J]. The Journal of the Acoustical Society of America, 1992, 91(6):3303-3312.
[17] ARISTÉGUI C, BASTE S. Optimal determination of the material symmetry axes and associated elasticity tensor from ultrasonic velocity data[J]. The Journal of the Acoustical Society of America, 1997, 102(3):1503-1521.
[18] REED R C. The superalloys:Fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006:121-139.
[19] LAN B, LOWE M J S, DUNNE F P E. A spherical harmonic approach for the determination of HCP texture from ultrasound:A solution to the inverse problem[J]. Journal of the Mechanics and Physics of Solids, 2015, 83:179-198.
[20] ZHANG J M, ZHANG Y, XU K W, et al. Young's modulus surface and Poisson's ratio curve for cubic metals[J]. Journal of Physics and Chemistry of Solids, 2007, 68(4):503-510.
[21] NOLZE G. Euler angles and crystal symmetry[J]. Crystal Research and Technology, 2015, 50(2):188-201.
[22] ROE R J. Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion[J]. Journal of Applied Physics, 1965, 36(6):2024-2031.
[23] LAN B, LOWE M J S, DUNNE F P E. A generalized spherical harmonic deconvolution to obtain texture of cubic materials from ultrasonic wave speed[J]. Journal of the Mechanics and Physics of Solids, 2015, 83:221-242.
[24] CLAY K, MINGARD K, MORRELL R, et al. R value measurement issues for grain boundaries in nickel single crystal castings[J]. Materials Science and Technology, 2010, 26(7):781-786.
[25] MACKENZIE J K. Second paper on statistics associated with the random disorientation of cubes[J]. Biometrika, 1958, 45(1-2):229-240.
Outlines

/