To ensure normal operation of onboard electrical equipment, a metal grounding and current return network should be added to the composite aircraft fuselage to meet the grounding requirements of the onboard electrical system. For calculation of the pressure drop in the composite aircraft grounding and current return network, the conductor-based volumetric partial element equivalent circuit method is used to model the grounding and current return network installed on the composite aircraft. We analyze the voltage drop of partial distribution unit loads which belong to 28 VDC, 115 VAC bus along the path in the grounding grid under the cruising condition, and consider the influence of large fault current injection and contact impedance between components on the voltage drop of the grounding and current return network. The voltage drop in the network is analyzed by establishing a simplified model. The proposed calculation method and simulation calculation results of the voltage drop in the network can provide references for the design and installation of composite aircraft grounding and current return network, fault management and electrical protection system design.
YANG Zhangang
,
SUI Zheng
,
ZHANG Qihao
,
LIU Jianying
. Voltage drop in composite aircraft grounding and current return network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(1)
: 324859
-324859
.
DOI: 10.7527/S1000-6893.2021.24859
[1] JAYAKRISHNA K, KAR V R, SULTAN M T H, et al. Materials selection for aerospace components[M]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 1-18.
[2] MEOLA C, BOCCARDI S, CARLOMAGNO G M. Composite material overview and its testing for aerospace components[M]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 69-108.
[3] RANA S, PARVEEN S, FANGUEIRO R. Multiscale composites for aerospace engineering[M]//Advanced Composite Materials for Aerospace Engineering. Amsterdam: Elsevier, 2016: 265-293.
[4] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797(in Chinese).
[5] ZHAOQ, ZHANG K, ZHU S, et al. Review on the electrical resistance/conductivity of carbon fiber reinforced polymer[J]. Applied Sciences, 2019, 9(11): 2390.
[6] 李涤尘,鲁中良,田小永,等.增材制造——面向航空航天制造的变革性技术[J/OL].航空学报,[2021-05-02].http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25387. LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-revolutionary technology for leading the aerospace manufacturing[J/OL]. Acta Aeronautica et Astronautica Sinica,[2021-05-02].http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25387.
[7] CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122.
[8] KARCH C, METZNER C. Lightning protection of carbon fibre reinforced plastics—An overview[C]//2016 33rd International Conference on Lightning Protection(ICLP). Piscataway: IEEE Press, 2016: 1-8.
[9] 刘锐, 张丽. 复合材料飞机电搭接/接地研究[J]. 航空科学技术, 2016, 27(8): 31-35. LIU R, ZHANG L. Research oncomposite aircraft electrical bonding/grounding[J]. Aeronautical Science & Technology, 2016, 27(8): 31-35(in Chinese).
[10] JONES C E, NORMAN P J, GALLOWAY S J, et al. Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//2016 18th European Conference on Power Electronics and Applications(EPE’16 ECCE Europe). Piscataway: IEEE Press, 2016: 1-10.
[11] GUTIERREZ G G, MATEOS ROMERO D, CABELLO M R, et al. On the design of aircraft electrical structure networks[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 401-408.
[12] REVEL I, PICHE A, PERES G, et al. Modeling strategy for functional current return in large CFRP structures for aircraft applications[C]//2008 International Symposium on Electromagnetic Compatibility-EMC Europe. Piscataway: IEEE Press, 2008: 1-5.
[13] ZHANG X Y, XU G Z, ZHANG S, et al. Anumerical computation forward problem model of electrical impedance tomography based on generalized finite element method[J]. IEEE Transactions on Magnetics, 2014, 50(2): 1045-1048.
[14] DUX L, ZOU J, WANG Z X. Calculation of the impedance of a rail track with earth return for the high-speed railway signal circuit using finite-element method[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
[15] RUEHLI A E. Equivalent circuit models for three-dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(3): 216-221.
[16] GARRETT J E. Advancements of the partial element equivalent circuit formulation[D].Lexington:The University of Kentucky,1997.
[17] 丛国瑞. 基于部分元等效电路的电磁建模方法研究[D]. 长沙: 国防科学技术大学, 2011: 17-30. CONG G R. Study of electromagnetic modeling approach based on partial element equivalent circuit[D]. Changsha: National University of Defense Technology, 2011: 17-30(in Chinese).
[18] 龙海波. 三维全媒质体系的部分元等效电路法及其建模[D]. 北京: 清华大学, 2005: 24-70. LONG H B. Partial element equivalent circuit method for three-dimensional fullmedium systems and its modeling[D]. Beijing: Tsinghua University, 2005: 24-70(in Chinese).
[19] 张筱. 基于等效原理的PEEC建模研究[D]. 北京: 清华大学, 2009: 24-113. ZHANG X. Partial element equivalent circuit method based on equivalent principle[D]. Beijing: Tsinghua University, 2009: 24-113(in Chinese).
[20] TORCHIO R. A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7452-7465.
[21] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036.
[22] GOLEANU A L, DUNAND M, GUICHON J M, et al. Towards the conception and optimisation of the current return path in a composite aircraft[C]//2010 IEEE International Systems Conference. Piscataway: IEEE Press, 2010: 466-471.
[23] GODDET E, RETIÈRE N, STOJANOVIC' V, et al. Maximizing the algebraic connectivity of meshed electrical pathways used as current return network[J]. Mathematics and Computers in Simulation, 2019, 158: 18-31.
[24] 刘建英, 隋政, 张起浩, 等. 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京航空航天大学学报, 2021, 47(5): 885-893. LIU J Y, SUI Z, ZHANG Q H,et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893(in Chinese).