Review

State of the art and perspectives of autonomous navigation technology

  • WANG Wei ,
  • XING Chaoyang ,
  • FENG Wenshuai
Expand
  • 1. China Aerospace Science and Technology Corporation, Beijing 100048, China;
    2. Beijing Aerospace Control Instrument Research Institute, Beijing 100094, China;
    3. Beijing Aerospace Times Optoelectronics Technology Co., Ltd., Beijing 100094, China

Received date: 2020-12-03

  Revised date: 2020-12-20

  Online published: 2021-04-29

Supported by

National Defense Science and Technology Innovation Special Zone Project

Abstract

The autonomous navigation technology is essential for the automated and intelligent operation of various motion carriers. This article briefly introduces the basic concepts of autonomous navigation technology, and illustrates the research progress of the technology in the fields of aerospace, aviation, ships, vehicles, and individual soldiers at home and abroad. The key technologies for autonomous navigation such as inertial navigation, inertial-based integrated navigation, geomagnetic navigation, gravity gradient navigation, celestial navigation and multi-source information fusion are analyzed. Then, the development trend of the technology is discussed, which can provide reference for the development of various mainstream autonomous navigation systems in China and assistance for the overall design of a variety of autonomous navigation tasks in the future.

Cite this article

WANG Wei , XING Chaoyang , FENG Wenshuai . State of the art and perspectives of autonomous navigation technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(11) : 525049 -525049 . DOI: 10.7527/S1000-6893.2021.25049

References

[1] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013, 39(6):723-729. WANG W. Status and development trend of inertial technology[J]. Acta Automatica Sinica, 2013, 39(6):723-729(in Chinese).
[2] 胡小平, 吴美平. 自主导航技术[M]. 北京:国防工业出版社, 2016. HU X P, WU M P. Autonomous navigation technology[M]. Beijing:National Defense Industry Press, 2016(in Chinese).
[3] 王大轶, 李茂登, 黄翔宇. 航天器多源信息融合自主导航技术[M]. 北京:北京理工大学出版社, 2018. WANG D Y, LI M D, HUANG X Y. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing:Beijing Institute of Technology Press, 2018(in Chinese).
[4] 秦永元. 惯性导航[M]. 2版. 北京:科学出版社, 2014. QIN YY. Inertial navigation[M]. 2nd edition. Beijing:Science Press, 2014(in Chinese).
[5] 房建成, 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2006. FANG J C, NING X L, TIAN Y L.Principles and methods of spacecraft autonomous celestial navigation[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[6] 高钟毓. 惯性导航系统技术[M]. 北京:清华大学出版社, 2012. GAO Z Y. Inertial navigation system technology[M]. Beijing:Tsinghua University Press, 2012(in Chinese).
[7] 王大轶, 符方舟, 孟林智, 等. 深空探测器自主控制技术综述[J]. 深空探测学报, 2019, 6(4):317-327. WANG D Y, FU F Z, MENG L Z, et al. Research of autonomous control technology for deep space probes[J]. Journal of Deep Space Exploration, 2019, 6(4):317-327(in Chinese).
[8] 潘科炎. 航天器的自主导航技术[J]. 航天控制, 1994, 12(2):18-27. PAN K Y. Autonomous navigationtechnique for spacecrafts[J]. Aerospace Control, 1994, 12(2):18-27(in Chinese).
[9] 丁衡高, 王寿荣, 黄庆安, 等. 微惯性仪表技术的研究与发展[J]. 中国惯性技术学报, 2001, 9(4):46-49. DING H G, WANG S R, HUANG Q A, et al. Research and development of micro inertial instruments[J]. Journal of Chinese InertialTechnology, 2001, 9(4):46-49(in Chinese).
[10] 董进武. 惯性导航技术浅析[J]. 仪表技术, 2017(1):41-43. DONG J W. Analysis on inertial navigation technology[J]. Instrumentation Technology, 2017(1):41-43(in Chinese).
[11] 徐欣彤, 桑吉章, 刘晖. 深空探测器光学自主导航方法探讨[J]. 导航定位学报, 2021, 9(1):1-4. XU X T, SANG J Z, LIU H. Discussion on optical autonomous navigation methods for deep spacecrafts[J]. Journal of Navigation and Positioning, 2021, 9(1):1-4(in Chinese).
[12] 张伟, 许俊, 黄庆龙, 等. 深空天文自主导航技术发展综述[J]. 飞控与探测, 2020, 3(4):8-16. ZHANG W, XU J, HUANG Q L, et al. Survey of autonomous celestial navigation technology for deep space[J]. Flight Control & Detection, 2020, 3(4):8-16(in Chinese).
[13] 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1):1-15. FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection, 2018, 1(1):1-15(in Chinese).
[14] 薛喜平, 张洪波, 孔德庆. 深空探测天文自主导航技术综述[J]. 天文研究与技术, 2017, 14(3):382-391. XUE X P, ZHANG H B, KONG D Q. An overview of celestial autonomous navigation technology for deep space exploration[J]. Astronomical Research & Technology, 2017, 14(3):382-391(in Chinese).
[15] YU Z S, CUI P Y, CRASSIDIS J L. Design and optimization of navigation and guidance techniques for Mars pinpoint landing:Review and prospect[J]. Progress in Aerospace Sciences, 2017, 94:82-94.
[16] NING X L, LI Z, YANG Y Q, et al. Analysis of ephemeris errors in autonomous celestial navigation during Mars approach phase[J]. Journal of Navigation, 2017, 70(3):505-526.
[17] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):1392-1404. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory & Applications, 2018, 35(10):1392-1404(in Chinese).
[18] GE D T, CUI P Y, ZHU S Y. Recent development of autonomous GNC technologies for small celestial body descent and landing[J]. Progress in Aerospace Sciences, 2019, 110:100551.
[19] LI T, HUANG R X, LI H Y, et al. Study on navigation and manual steering strategies in the fly-around phase of teleoperation rendezvous and docking[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(3):595-609.
[20] CHRISTIAN J A. Accurate planetary limb localization for image-based spacecraft navigation[J]. Journal of Spacecraft and Rockets, 2017, 54(3):708-730.
[21] 陆元九. 火箭轨道控制的辉煌成就[J]. 科学通报, 1960, 5(3):69-70. LU Y J.The brilliant achievement of rocket orbit control[J]. Chinese Science Bulletin, 1960, 5(3):69-70(in Chinese).
[22] 颜华, 陈家斌, 刘星桥. 冗余技术提高惯性导航系统可靠性的应用[J]. 中国惯性技术学报, 2003, 11(3):68-72. YAN H, CHEN J B, LIU X Q. Application of redundancy technology in inertial navigation systems[J]. Journal of Chinese Inertial Technology, 2003, 11(3):68-72(in Chinese).
[23] 郭建刚, 王跃鹏, 郑伟. 十二表冗余捷联惯导系统数据融合技术研究[J]. 导航定位与授时, 2019, 6(6):41-49. GUO J G, WANG Y P, ZHENG W. Study on data fusion for the 12-sensor redundant strapdown inertial navigation system[J]. Navigation Positioning and Timing, 2019, 6(6):41-49(in Chinese).
[24] 王巍. 新型惯性技术发展及在宇航领域的应用[J]. 红外与激光工程, 2016, 45(3):11-16. WANG W. Development of new inertial technology and its application in aerospace field[J]. Infrared and Laser Engineering, 2016, 45(3):11-16(in Chinese).
[25] LYU D H, WANG J Q, HE Z M, et al. Landmark-based inertial navigation system for autonomous navigation of missile platform[J]. Sensors, 2020, 20(11):3083.
[26] 钱超, 张子剑, 李大伟. 平台式惯性导航系统在线可靠性评估技术[J]. 航空学报, 2017, 38(9):321259. QIAN C, ZHANG Z J, LI D W. On-line reliability assessment of platform inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):321259(in Chinese).
[27] 冯培德. 论混合式惯性导航系统[J]. 中国惯性技术学报, 2016, 24(3):281-284, 290. FENG P D. On hybrid inertial navigation systems[J]. Journal of Chinese Inertial Technology, 2016, 24(3):281-284, 290(in Chinese).
[28] 魏宗康, 徐白描. 三轴陀螺稳定平台伺服回路全姿态解耦及变增益控制方法[J]. 飞控与探测, 2020, 3(3):8-15. WEI Z K, XU B M. All attitudes decoupling and magnitude-adjusted control method of servo loop of three axis gyro stabilized platform[J]. Flight Control & Detection, 2020, 3(3):8-15(in Chinese).
[29] 李海霞, 高钟毓, 张嵘, 等. ESO增强四轴平台伺服系统抗扰能力的研究[J]. 机械工程学报, 2010, 46(12):182-187. LI H X, GAO Z Y, ZHANG R, et al. Enhancing disturbances rejection ability of four-axis gyro stabilized platform with ESO[J]. Journal of Mechanical Engineering, 2010, 46(12):182-187(in Chinese).
[30] 唐江河, 詹双豪, 尉超, 等. 基于规划航迹的"三自"光纤惯导系统航向耦合效应抑制技术[J]. 导航定位与授时, 2020, 7(3):46-53. TANGJ H, ZHAN S H, WEI C, et al. Restrain technology of heading-coupling effect of three-autonomy FOG INS based on planned track[J]. Navigation Positioning and Timing, 2020, 7(3):46-53(in Chinese).
[31] ZABALEGUI P, DE MIGUEL G, PÉREZ A, et al. A review of the evolution of the integrity methods applied in GNSS[J]. IEEE Access, 2020, 8:45813-45824.
[32] 刘俊, 赵菁, 赵慧俊, 等. 仿生光磁导航技术发展研究综述[J]. 飞控与探测, 2019, 2(4):14-25. LIU J, ZHAO J, ZHAO H J, et al. A review of research on development of bionic navigation technology[J]. Flight Control & Detection, 2019, 2(4):14-25(in Chinese).
[33] 李俊峰, 崔文, 宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践, 2012, 34(2):1-9. LI J F, CUI W, BAO Y. A survey of autonomous navigation for deep space exploration[J]. Mechanics in Engineering, 2012, 34(2):1-9(in Chinese).
[34] DAVARIAN F, ASMAR S, ANGERT M, et al. Improving small satellite communications and tracking in deep space-A review of the existing systems and technologies with recommendations for improvement. part II:small satellite navigation, proximity links, and communications link science[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(7):26-40.
[35] WITZE A. NASA plans Mars sample-return rover[J]. Nature, 2014, 509(7500):272.
[36] BECKER W, KRAMER M, SESANA A. Pulsar timing and its application for navigation and gravitational wave detection[J]. Space Science Reviews, 2018, 214(1):1-25.
[37] 刘博, 申麟. "猎鹰"9火箭一子级海上回收试验成功及成本分析[J]. 中国航天, 2016(5):22-25. LIU B, SHEN L."Falcon" 9 rocket first sub-stage sea recovery test suc-cess and cost analysis[J]. Aerospace China, 2016(5):22-25(in Chinese).
[38] CANCIANI A, RAQUET J. Airborne magnetic anomaly navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1):67-80.
[39] 刘哲. 卫星导航系统在民用航空领域的发展与应用[J]. 信息通信, 2016, 29(6):127-129. LIU Z.The development and application of satellite navigation system in the field of civil aviation[J]. Information & Communications, 2016, 29(6):127-129(in Chinese).
[40] 卢鋆, 张弓, 陈谷仓, 等. 卫星导航系统发展现状及前景展望[J]. 航天器工程, 2020, 29(4):1-10. LU J, ZHANG G, CHEN G C, et al. Development status and prospect of satellite navigation system[J]. Spacecraft Engineering, 2020, 29(4):1-10(in Chinese).
[41] 李琬琛. 分布式小卫星系统的技术发展与应用前景[J]. 中国新通信, 2017, 19(23):88-89. LI W C.Technical development and application prospects of distributed small satellite system[J]. China New Telecommunications, 2017, 19(23):88-89(in Chinese).
[42] 林益明, 何善宝, 郑晋军, 等. 全球导航星座星间链路技术发展建议[J]. 航天器工程, 2010, 19(6):1-7. LIN Y M, HE S B, ZHENG J J, et al. Development recommendation of inter-satellites links in GNSS[J]. Spacecraft Engineering, 2010, 19(6):1-7(in Chinese).
[43] GUO L, WANG F H, GONG X W, et al. Initial results of distributed autonomous orbit determination forBeidou BDS-3 satellites based on inter-satellite link measurements[J]. GPS Solutions, 2020, 24(3):1-11.
[44] BELMONTE L M, MORALES R, FERNÁNDEZ-CABALLERO A. Computer vision in autonomous unmanned aerial vehicles-A systematic mapping study[J]. Applied Sciences, 2019, 9(15):3196.
[45] 屈蔷, 刘建业, 熊智, 等. 机载天文/惯性位置组合导航[J]. 南京理工大学学报(自然科学版), 2010, 34(6):729-732, 748. QU Q, LIU J Y, XIONG Z, et al. Airborne SINS/CNS location integrated system[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2010, 34(6):729-732, 748(in Chinese).
[46] 祖立业, 王卫华, 刘昱晗. 基于通信链路+成像测量的自主导航技术研究[J]. 自动化技术与应用, 2018, 37(6):60-64, 73. ZU L Y, WANG W H, LIU Y H. Autonomous navigation based on communication link and imaging measurement[J]. Techniques of Automation and Applications, 2018, 37(6):60-64, 73(in Chinese).
[47] 薛连莉, 沈玉芃, 宋丽君, 等. 2019年国外导航技术发展综述[J]. 导航与控制, 2020, 19(2):1-9. XUE L L, SHEN Y P, SONG L J, et al. Development and review of foreign navigation technology in 2019[J]. Navigation and Control, 2020, 19(2):1-9(in Chinese).
[48] 宋韬. 基于陆基导航系统的航空器定位三维约束平差算法及其仿真计算[J]. 兵器装备工程学报, 2019, 40(2):131-135. SONG T. Algorithm and its emulation calculation for three-dimensional constraint adjustment of aircraft positioning basing on ground-based navigation[J]. Journal of Ordnance Equipment Engineering, 2019, 40(2):131-135(in Chinese).
[49] NONAMI K. Present state and future prospect of autonomous control technology for industrial drones[J]. IEEE Transactions on Electrical and Electronic Engineering, 2020, 15(1):6-11.
[50] 赵娟, 白春, 胡亚辉, 等. 基于北斗卫星的船载无人机惯性导航定位系统[J]. 舰船科学技术, 2020, 42(8):139-141. ZHAO J, BAI C, HU Y H, et al. Design of shipborne UAV inertial navigation positioning system based onBeidou satellite[J]. Ship Science and Technology, 2020, 42(8):139-141(in Chinese).
[51] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1):4-14. JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):4-14(in Chinese).
[52] 杨世超, 梅林. 无方向性信标系统监测方法[J]. 中国无线电, 2019(5):59-61. YANG S C, MEI L. The monitoring method of directionless beacon system[J]. China Radio, 2019(5):59-61(in Chinese).
[53] 徐敬舟, 刘新强, 陈明权. DME/VOR导航设备的应用研究[J]. 中国新技术新产品, 2019(11):8-9. XU J Z, LIU X Q, CHEN M Q.Application research of DME/VOR navigation equipment[J]. New Technology & New Products of China, 2019(11):8-9(in Chinese).
[54] 刘贵行, 魏国, 赵世伟. 机载测距机测试平台设计与开发[J]. 现代电子技术, 2019, 42(11):165-168, 173. LIU G H, WEI G, ZHAO S W. Design and development of testing platform for airborne DME[J]. Modern Electronics Technique, 2019, 42(11):165-168, 173(in Chinese).
[55] 查月. 舰艇惯性导航技术应用与展望[J]. 现代导航, 2017, 8(2):147-151. ZHA Y. Application and prospect of marine inertial navigation technology[J]. Modern Navigation, 2017, 8(2):147-151(in Chinese).
[56] 韩剑辉, 许镇琳, 赵承利, 等. 船舶综合导航系统应用技术[J]. 天津大学学报, 2010, 43(2):121-125. HAN J H, XU Z L, ZHAO C L, et al. Application of marine integrated navigation system[J]. Journal of Tianjin University, 2010, 43(2):121-125(in Chinese).
[57] 王玲, 张彬祥. 船舶通信导航技术及发展趋势[J]. 舰船电子工程, 2016, 36(3):17-21. WANG L, ZHANG B X. Development trend of marine communication and navigation technology[J]. Ship Electronic Engineering, 2016, 36(3):17-21(in Chinese).
[58] 胡常青, 朱玮, 何远清, 等. 无人水面艇自主导航技术[J]. 导航与控制, 2019, 18(1):19-26, 90. HU C Q, ZHU W, HE Y Q, et al. Autonomous navigation technology of unmanned surface vehicle[J]. Navigation and Control, 2019, 18(1):19-26, 90(in Chinese).
[59] DEL-RIO-RIVERA F, RAMÍREZ-RIVERA V M, DONAIRE A, et al. Robust trajectory tracking control for fully actuated marine surface vehicle[J]. IEEE Access, 2020, 8:223897-223904.
[60] 宋丽君, 薛连莉, 董燕琴, 等. 全源定位与导航的发展与建议[J]. 导航与控制, 2017, 16(6):99-105, 24. SONG L J, XUE LL, DONG Y Q, et al. Development and suggestions of all sources position and navigation[J]. Navigation and Control, 2017, 16(6):99-105, 24(in Chinese).
[61] PANDA M, DAS B, SUBUDHI B, et al. A comprehensive review of path planning algorithms for autonomous underwater vehicles[J]. International Journal of Automation and Computing, 2020, 17(3):321-352.
[62] LI D L, WANG P, DU L. Path planning technologies forautonomous underwater vehicles-A review[J]. IEEE Access, 2019, 7:9745-9768.
[63] WU Y H, TA XX, XIAO R C, et al. Survey of underwater robot positioning navigation[J]. Applied Ocean Research, 2019, 90:101845.
[64] STUTTERS L, LIU HH, TILTMAN C, et al. Navigation technologies for autonomous underwater vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(4):581-589.
[65] 郭银景, 孔芳, 张曼琳, 等. 自主水下航行器的组合导航系统综述[J]. 导航定位与授时, 2020, 7(5):107-119. GUO Y J, KONG F, ZHANG M L, et al. Review of integrated navigation system for AUV[J]. Navigation Positioning and Timing, 2020, 7(5):107-119(in Chinese).
[66] ZHANG T W, TANG J L, QIN S J, et al. Review of navigation and positioning of deep-sea manned submersibles[J]. Journal of Navigation, 2019, 72(4):1021-1034.
[67] XU Y Z, YU G Z, WU X K, et al. An enhanced viola-Jones vehicle detection method from unmanned aerial vehicles imagery[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7):1845-1856.
[68] BIJJAHALLI S, SABATINI R, GARDI A. Advances in intelligent and autonomous navigation systems for small UAS[J]. Progress in Aerospace Sciences, 2020, 115:100617.
[69] RUCCO A, SUJIT P B, AGUIAR A P, et al. Optimal rendezvous trajectory for unmanned aerial-ground vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2):834-847.
[70] KONRAD T, GEHRT JJ, LIN J Y, et al. Advanced state estimation for navigation of automated vehicles[J]. Annual Reviews in Control, 2018, 46:181-195.
[71] KOLAR P, BENAVIDEZ P, JAMSHIDI M. Survey ofdatafusion techniques for laser and vision based sensor integration for autonomous navigation[J]. Sensors, 2020, 20(8):2180.
[72] LUO J X, YAN B W, WOOD K.InnoGPS for data-driven exploration of design opportunities and directions:The case of google driverless car project[J]. Journal of Mechanical Design, 2017, 139(11):111416.
[73] GUL F, RAHIMAN W, NAZLI ALHADY SS. A comprehensive study for robot navigation techniques[J]. Cogent Engineering, 2019, 6(1):1632046.
[74] BALTES J, KUNG D W, WANG W Y, et al. Adaptive computational SLAM incorporating strategies of exploration and path planning[J]. The Knowledge Engineering Review, 2019, 34:e23.
[75] PAYÁ L, GIL A, REINOSO O. A state-of-the-art reviewon mapping and localization of mobile robots using omnidirectional vision sensors[J]. Journal of Sensors, 2017, 2017:1-20.
[76] RUBIO F, VALERO F, LLOPIS-ALBERT C. A review of mobile robots:Concepts, methods, theoretical framework, and applications[J]. International Journal of Advanced Robotic Systems, 2019, 16(2):172988141983959.
[77] KHALID S, ULLAH S, ALI N M, et al. Navigation aids in collaborative virtual environments:Comparison of 3DML, audio, textual, arrows-casting[J]. IEEE Access, 2019, 7:152979-152989.
[78] 郑勇, 刘新江, 李崇辉. 发展单兵星敏导航装备的必要性及技术特点[J]. 航空学报, 2020, 41(8):623693. ZHENG Y, LIU X J, LI C H. Necessity and technical characteristics of developing single-soldier star sensor navigation equipment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):623693(in Chinese).
[79] 刘公绪, 史凌峰. 室内导航与定位技术发展综述[J]. 导航定位学报, 2018, 6(2):7-14. LIU G X, SHI L F. An overview about development of indoor navigation and positioning technology[J]. Journal of Navigation and Positioning, 2018, 6(2):7-14(in Chinese).
[80] DENG Z L, FU X, WANG H H. An IMU-aided body-shadowing error compensation method for indoor bluetooth positioning[J]. Sensors, 2018, 18(1):304.
[81] CHEN P Z, KUANG Y, CHEN X Y. A UWB/improved PDR integration algorithm applied to dynamic indoor positioning for pedestrians[J]. Sensors, 2017, 17(9):2065.
[82] 闫大禹, 宋伟, 王旭丹, 等. 国内室内定位技术发展现状综述[J]. 导航定位学报, 2019, 7(4):5-12. YAN D Y, SONG W, WANG X D, et al. Review of development status of indoor location technology in China[J]. Journal of Navigation and Positioning, 2019, 7(4):5-12(in Chinese).
[83] 葛悦涛, 薛连莉, 李婕敏. 美国陆军PNT能力发展趋势分析[J]. 导航定位与授时, 2019, 6(2):12-18. GE Y T, XUE LL, LI J M. Analysis of the development trends of US army PNT capability[J]. Navigation Positioning and Timing, 2019, 6(2):12-18(in Chinese).
[84] 费程羽, 苏中, 李擎. 行人惯性导航零速检测算法[J]. 传感器与微系统, 2016, 35(3):147-150, 153. FEI C Y, SU Z, LI Q. Zero velocity detection algorithm for pedestrian inertial navigation[J]. Transducer and Microsystem Technologies, 2016, 35(3):147-150, 153(in Chinese).
[85] 王巍. 光纤陀螺惯性系统[M]. 北京:中国宇航出版社, 2010. WANG W. Fiber optic gyro inertial system[M]. Beijing:China Aerospace Publishing House, 2010(in Chinese).
[86] SHOKRI S, RAHEMI N, MOSAVI M R. Improving GPS positioning accuracy using weighted Kalman Filter and variance estimation methods[J]. CEAS Aeronautical Journal, 2020, 11(2):515-527.
[87] GONG X L, ZHANG J X, FANG J C. A modified nonlinear two-filter smoothing for high-precision airborne integrated GPS and inertial navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12):3315-3322.
[88] 雷宏杰, 张亚崇. 机载惯性导航技术综述[J]. 航空精密制造技术, 2016, 52(1):7-12. LEI H J, ZHANG Y C. Review ofairborne inertial navigation technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(1):7-12(in Chinese).
[89] SYED Z F, AGGARWAL P, NIU X J, et al. Civilian vehicle navigation:Required alignment of the inertial sensors for acceptable navigation accuracies[J]. IEEE Transactions on Vehicular Technology, 2008, 57(6):3402-3412.
[90] 张敏, 陈安升, 陈帅, 等. 基于运动约束辅助的车载惯性导航算法研究[J]. 自动化与仪器仪表, 2020(7):12-16. ZHANG M, CHEN A S, CHEN S, et al. Vehicle inertial navigation algorithm based on adaptive motion constraint assistance[J]. Automation & Instrumentation, 2020(7):12-16(in Chinese).
[91] WANG D, XU X S, YAO Y Q, et al. A novel SINS/DVL tightly integrated navigation method for complex environment[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7):5183-5196.
[92] 吴伟仁, 李骥, 黄翔宇, 等. 惯导/测距/测速相结合的安全软着陆自主导航方法[J]. 宇航学报, 2015, 36(8):893-899. WU W R, LI J, HUANG X Y, et al. INS/rangefinder/velocimetry based autonomous navigation method for safe landing[J]. Journal of Astronautics, 2015, 36(8):893-899(in Chinese).
[93] 张礼廉, 屈豪, 毛军, 等. 视觉/惯性组合导航技术发展综述[J]. 导航定位与授时, 2020, 7(4):50-63. ZHANG LL, QU H, MAO J, et al. A survey of intelligence science and technology integrated navigation technology[J]. Navigation Positioning and Timing, 2020, 7(4):50-63(in Chinese).
[94] 李群生, 赵剡, 王进达. 一种适用于高动态强干扰环境的视觉辅助微机械捷联惯性导航系统/全球定位系统超紧组合导航系统[J]. 兵工学报, 2019, 40(11):2241-2249. LI Q S, ZHAO Y, WANG J D. A vision aided MEMS-SINS/GPS ultra-tight coupled navigation system suitablefor high dynamic and strong interference environment[J]. Acta Armamentarii, 2019, 40(11):2241-2249(in Chinese).
[95] NGUYEN T H, NGUYEN T M, XIE L H. Tightly-coupled ultra-wideband-aided monocular visual SLAM with degenerate anchor configurations[J]. Autonomous Robots, 2020, 44(8):1519-1534.
[96] 马广富, 王伟, 张伟, 等. 面向小推力变轨的天文组合自主导航方法[J]. 宇航学报, 2020, 41(9):1166-1174. MA G F, WANG W, ZHANG W, et al. Integrated celestial autonomous navigation method for low thrust orbit maneuver[J]. Journal of Astronautics, 2020, 41(9):1166-1174(in Chinese).
[97] 孙欢, 杨宾峰, 李驰, 等. 地磁导航中地磁传感器双噪声联合估计补偿方法[J]. 探测与控制学报, 2019, 41(5):90-95. SUN H, YANG B F, LI C, et al. Dual noise joint estimation and compensation method for geomagnetic sensors in geomagnetic navigation[J]. Journal of Detection & Control, 2019, 41(5):90-95(in Chinese).
[98] LI H, LIU M Y, LIU K. Bio-inspired geomagnetic navigation method for autonomous underwater vehicle[J]. Journal of Systems Engineering and Electronics, 2017, 28(6):1203-1209.
[99] YAN Z, MA J, TIAN J W. Accurate aerial object localization using gravity and gravity gradient anomaly[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1214-1217.
[100] WANG D, XU X S, YAO Y Q, et al. A novel SINS/DVL tightly integrated navigation method for complex environment[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7):5183-5196.
[101] NING X L, GUI M Z, ZHANG J, et al. Impact of the pulsar's direction on CNS/XNAV integrated navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6):3043-3055.
[102] 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3):281-287. SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3):281-287(in Chinese).
[103] CAI X W, ZHANG C X, YANG Y Q, et al. Data fusion method of measurement lag compensation formultirate MIMU/FOG/GNSS compound navigation[J]. IEEE Sensors Journal, 2020, 20(9):5048-5060.
[104] 冯文帅. 高精度光纤陀螺发展综述[C]//第四届航天电子战略研究论坛论文集, 2018:80-83, 92. FENG W S. Overview of the development of high-precisionfiber optic gyroscopes[C]//Proceedings of the 4th Aerospace Electronics Strategic Research Forum, 2018:80-83, 92(in Chinese).
[105] 李男男, 邢朝洋. 惯性微系统封装集成技术研究进展[J]. 导航与控制, 2018, 17(6):28-34. LI N N, XING C Y. Development of inertial micro-system packaging and integration technology[J]. Navigation and Control, 2018, 17(6):28-34(in Chinese).
[106] BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836):77-82.
[107] 薛连莉, 戴敏, 葛悦涛, 等. 2018年国外惯性技术发展与回顾[J]. 飞航导弹, 2019(4):16-21. XUE L L, DAI M, GE Y T, et al. Development and review of foreign inertial technology in 2018[J]. Aerodynamic Missile Journal, 2019(4):16-21(in Chinese).
[108] 王巍, 冯文帅, 于海成. 基于高灵敏超导探测器的新型脉冲光高精度光纤陀螺技术研究[J]. 导航与控制, 2020, 19(3):33-39, 58. WANG W, FENG W S, YU H C. Research on the novel pulsed light high-precision fiber optic gyroscope based on a high-sensitive superconducting detector[J]. Navigation and Control, 2020, 19(3):33-39, 58(in Chinese).
[109] 王巍, 桑建芝, 刘院省. 非线性光学干涉仪的研究现状及发展趋势[J]. 导航与控制, 2020, 19(3):1-6, 13. WANG W, SANG J Z, LIU Y X. Research status and development trend of nonlinear optical interferometer[J]. Navigation and Control, 2020, 19(3):1-6, 13(in Chinese).
Outlines

/