Reviews

Dynamic characteristics of aero-engine pipeline system: Review

  • WANG Bo ,
  • GAO Peixin ,
  • MA Hui ,
  • SUN Wei ,
  • LIN Junzhe ,
  • LI Hui ,
  • HAN Qingkai ,
  • LIU Zhonghua
Expand
  • 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    2. School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
    3. Key Laboratory of Vibration and Control of Aero-Propulsion Systems, Ministry of Education, Northeastern University, Shenyang 110819, China;
    4. Shenyang Area 2nd Military Pepresentative Room of Air Force Equipment Department, Shenyang 110043, China

Received date: 2021-01-26

  Revised date: 2021-02-28

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (51805462); National Major Projects of Aero-engines and Gas Turbines (J2019-I-0008-0008)

Abstract

The aero-engine pipeline system is mainly affected by the coupling excitations from both external and internal loads. The external loads transferred to the engine casing include the high pressure and low pressure rotor vibrations, aerodynamic load, combustion chamber flame pulsation and aerodynamic noise excitations, while the internal fluid excitations involve fluid pulsating pressure and impact load caused by the pipeline shape change. Meanwhile, pipelines of different types are connected to the casing and accessories through clamps, supports and brackets, producing considerable structure coupling. These could easily induce excessive vibrations of the pipeline system under multi-source excitations, resulting in crack fatigue faults in pipelines and clamps, necessitating investigation into the dynamic characteristic optimization analysis in the design stage to improve the reliability of the pipeline system and propose the design standards and specifications. Previous dynamics analysis of the pipeline system mainly focused on that of aircraft, ships and other oil pipelines, with few works on aero-engine pipeline systems. The studies on dynamic characteristics of aero-engine pipeline-clamps are reviewed and prospected, including static and dynamic characteristic representations of clamps, dynamic characteristics of different type pipeline systems with elastic support boundaries, fluid-pipelines dynamics, and dynamic optimization of pipeline systems. Finally, theoretical and technical suggestions on the dynamic design and vibration control of aero-engine complex pipeline systems are proposed.

Cite this article

WANG Bo , GAO Peixin , MA Hui , SUN Wei , LIN Junzhe , LI Hui , HAN Qingkai , LIU Zhonghua . Dynamic characteristics of aero-engine pipeline system: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(5) : 25332 -025332 . DOI: 10.7527/S1000-6893.2021.25332

References

[1] MUNIYANDI M, DOWDING A, ANDERS S. Vibration testing and validation of aero engines pipe work[C]//ISABE, 2017.
[2] 林君哲, 周恩涛, 杜林森, 等. 航空发动机管路系统振动机制及故障诊断研究综述[J]. 机床与液压, 2013, 41(1):163-164, 141. LIN J Z, ZHOU E T, DU L S, et al. Literature review on vibration mechanism and fault diagnosis of the pipe system of aero-engine[J]. Machine Tool & Hydraulics, 2013, 41(1):163-164, 141(in Chinese).
[3] 刘海年, 刘志强, 张大义, 等. 航空发动机成品振动环境分析与试验载荷谱确定[J]. 航空维修与工程, 2013(4):63-65. LIU H N, LIU Z Q, ZHANG D Y, et al. Study on the vibration environment characteristics and test spectrum of aero-engine accessories[J]. Aviation Maintenance & Engineering, 2013(4):63-65(in Chinese).
[4] 王桂华, 刘海年, 张大义, 等. 航空发动机成附件振动环境试验剖面确定方法研究[J]. 推进技术, 2013, 34(8):1101-1107. WANG G H, LIU H N, ZHANG D Y, et al. Study on formulating method for vibration environment test profiles of aero-engine accessories[J]. Journal of Propulsion Technology, 2013, 34(8):1101-1107(in Chinese).
[5] 许锷俊. 航空发动机导管结构完整性要求的初步研究[J]. 航空发动机, 1994, 20(3):53-62. XU E J. The preliminary study on the integrity requirements of the aero-engine pipe structure[J]. Aeroengine, 1994, 20(3):53-62(in Chinese).
[6] GAO P X, YU T, ZHANG Y L, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft:A review[J]. Chinese Journal of Aeronautics, 2021, 34(4):83-114.
[7] 刘中华, 李兴泉, 贾铎, 等. 航空发动机液压管路裂纹故障分析[J]. 航空发动机, 2020, 46(5):66-70. LIU Z H, LI X Q, JIA D, et al. Crack fault analysis of hydraulic pipe for an aeroengine[J]. Aeroengine, 2020, 46(5):66-70(in Chinese).
[8] 李洋, 佟文伟, 韩振宇, 等. 发动机引气管卡箍断裂原因分析[J]. 失效分析与预防, 2013, 8(3):167-172. LI Y, TONG W W, HAN Z Y, et al. Fracture analysis of aero-engine cited trachea clamp[J]. Failure Analysis and Prevention, 2013, 8(3):167-172(in Chinese).
[9] 刘天文, 李舜酩, 庞燕龙, 等. 航空发动机燃油总管支架断裂故障分析[J]. 燃气涡轮试验与研究, 2015, 28(4):23-26, 56. LIU T W, LI S M, PANG Y L, et al. Investigation on fuel manifold bracket fracture failure for an aero-engine[J]. Gas Turbine Experiment and Research, 2015, 28(4):23-26, 56(in Chinese).
[10] 刘中华, 贾铎, 刘鑫. 某航空发动机卡箍断裂故障分析[J]. 航空发动机, 2019, 45(3):77-81. LIU Z H, JIA D, LIU X. Fracture failure analysis of clamp for an aeroengine[J]. Aeroengine, 2019, 45(3):77-81(in Chinese).
[11] 尹泽勇, 陈亚农. 卡箍刚度的有限元计算与实验测定[J]. 航空动力学报, 1999, 14(2):179-182. YIN Z Y, CHEN Y N. Finite element analysis and experimental measurement of stiffness of hoop[J]. Journal of Aerospace Power, 1999, 14(2):179-182(in Chinese).
[12] 朱昭君, 陈志英. 卡箍的参数化建模及参数对刚度的影响[J]. 河南科技大学学报(自然科学版), 2011, 32(5):12-15, 5. ZHU Z J, CHEN Z Y. Parametric modeling and effect of parameters on stiffness for clamp[J]. Journal of Henan University of Science & Technology (Natural Science), 2011, 32(5):12-15, 5(in Chinese).
[13] 柴清东, 朴玉华, 马辉, 等. 卡箍-管路系统固有特性计算与试验方法[J]. 航空动力学报, 2019, 34(5):1029-1035. CHAI Q D, PIAO Y H, MA H, et al. Calculation of natural characteristics and experimental methods of the clamp-pipe system[J]. Journal of Aerospace Power, 2019, 34(5):1029-1035(in Chinese).
[14] LI Z Y, WANG J J, QIU M X. Dynamic characteristics of fluid-conveying pipes with piecewise linear support[J]. International Journal of Structural Stability and Dynamics, 2016, 16(6):1550025.
[15] 李占营, 王建军, 邱明星. 简谐激励下柔性卡箍支承管路系统响应[J]. 航空动力学报, 2017, 32(11):2705-2712. LI Z Y, WANG J J, QIU M X. Responses of pipe system with flexible clamp under harmonic excitation[J]. Journal of Aerospace Power, 2017, 32(11):2705-2712(in Chinese).
[16] 闫辉, 姜洪源, 李瑰贤, 等. 航空发动机管路支承用金属隔振器性能研究[J]. 中国机械工程, 2007, 18(12):1443-1447. YAN H, JIANG H Y, LI G X, et al. Research on the performance of metal isolator used in the pipeline support of aeroengine[J]. China Mechanical Engineering, 2007, 18(12):1443-1447(in Chinese).
[17] 李鑫, 张利剑, 何银铜. 改进PSO的金属橡胶卡箍隔振仿真分析与参数优化[J]. 智能系统学报, 2015, 10(4):599-606. LI X, ZHANG L J, HE Y T. Simulation analysis and parameter optimization of vibration isolation of metal rubber clamps based on the modified PSO[J]. Transactions on Intelligent Systems, 2015, 10(4):599-606(in Chinese).
[18] JIANG F, DING Z Y, WU Y W, et al. Energy dissipation characteristics and parameter identification of symmetrically coated damping structure of pipelines under different temperature environment[J]. Symmetry, 2020, 12(8):1283.
[19] 李枫, 刘伟, 韦顺超, 等. 航空液压管道卡箍等效刚度及其影响因素研究[J]. 机械科学与技术, 2017, 36(9):1472-1476. LI F, LIU W, WEI S C, et al. Research on equivalent stiffness and influence factors of aero-clamps for aircraft hydraulic pipelines[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9):1472-1476(in Chinese).
[20] 孙冰江. 考虑卡箍等效刚度的航空液压管路系统动力学分析[D]. 秦皇岛:燕山大学, 2018:9-20, 22-28. SUN B J. Dynamic analysis of aviation hydrau-lic pipeline system considering the equivalent stiffness of clamp[D]. Qinhuangdao:Yanshan University, 2018:9-20, 22-28. (in Chinese)
[21] 高晔, 孙伟, 朴玉华, 等. 基于实测频响函数反推管路卡箍支承刚度与阻尼[J]. 航空动力学报, 2019, 34(3):664-670. GAO Y, SUN W, PIAO Y H, et al. Inverse identification of support stiffness and damping of hoop based on measured FRF[J]. Journal of Aerospace Power, 2019, 34(3):664-670(in Chinese).
[22] GAO Y, SUN W. Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload[J]. Frontiers of Mechanical Engineering, 2019, 14(3):358-368.
[23] 高晔, 孙伟, 马辉. 基于实测扫频响应反推管路卡箍支承刚度及阻尼[J]. 振动与冲击, 2020, 39(8):58-63. GAO Y, SUN W, MA H. Inverse identification of the pipeline support stiffness and damping of the hoop based on the measured sweep frequency response[J]. Journal of Vibration and Shock, 2020, 39(8):58-63(in Chinese).
[24] ULANOV A M, BEZBORODOV S A. Calculation method of pipeline vibration with damping supports made of the MR material[J]. Procedia Engineering, 2016, 150:101-106.
[25] BEZBORODOV S A, ULANOV A M. Calculation of vibration of pipeline bundle with damping support made of MR material[J]. Procedia Engineering, 2017, 176:169-174.
[26] 吕金华, 臧朝平, 许本胜, 等. 卡箍动力学特性研究[J]. 机械制造与自动化, 2020, 49(4):28-31. LYU J H, ZANG C P, XU B S, et al. Study of dynamic characteristics of clamp[J]. Machine Building & Automation, 2020, 49(4):28-31(in Chinese).
[27] LIU X D, SUN W, GAO Z H. Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm[J]. IEEE Access, 2020, 8:224394-224408.
[28] 闫辉, 姜洪源, 刘文剑, 等. 具有迟滞非线性的金属橡胶隔振器参数识别研究[J]. 物理学报, 2009, 58(8):5238-5243. YAN H,JIANG H Y, LIU W J, et al. Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics[J]. Acta Physica Sinica, 2009, 58(8):5238-5243(in Chinese).
[29] 吕金华, 臧朝平, 张让威, 等. 基于测试数据的卡箍非线性等效建模方法[J]. 航空动力学报, 2019, 34(9):1944-1952. LYU J H, ZANG C P, ZHANG R W, et al. Nonlinear equivalent modeling method for clamp based on test data[J]. Journal of Aerospace Power, 2019, 34(9):1944-1952(in Chinese).
[30] 吕金华. 航空发动机外部管路单联卡箍动力学特性研究[D]. 南京:南京航空航天大学, 2019:48-70. LYU J H. Research on dynamic characteristics of single coupled clamp of external pipe system of aeroengine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:48-70(in Chinese).
[31] 刘中华, 贾铎, 王鑫, 等. 航空发动机卡箍装配应力试验与装配参数控制方法[J]. 航空动力学报, 2020, 35(2):368-377. LIU Z H, JIA D, WANG X, et al. Clamp assembly stress test of aero-engine and assembly parameter control method[J]. Journal of Aerospace Power, 2020, 35(2):368-377(in Chinese).
[32] GUO X M, MA H, ZHANG X F, et al. Uncertain frequency responses of clamp-pipeline systems using an interval-based method[J]. IEEE Access, 2020, 8:29370-29384.
[33] 吕金华, 臧朝平, 许本胜, 等. 卡箍性能对管路系统动力学特性影响分析[J]. 机械制造与自动化, 2020, 49(3):43-46. LV J H, ZANG C P, XU B S, et al. Analysis of influence of clamp performance on dynamic characteristics of pipe system[J]. Machine Building & Automation, 2020, 49(3):43-46(in Chinese).
[34] 于涛, 曲虹全, 王潇, 等. 基于动力学缩减的长跨距管路系统振动特性分析[J]. 烟台大学学报(自然科学与工程版), 2020, 33(4):457-463. YU T, QU H Q, WANG X, et al. Vibration characteristics analysis of long span pipeline system based on dynamics reduction method[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2020, 33(4):457-463(in Chinese).
[35] CHAI Q D, ZENG J, MA H, et al. A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps[J]. Chinese Journal of Aeronautics, 2020, 33(12):3253-3265.
[36] 康力, 洪杰, 徐雷, 等. 航空发动机外部管路的振动响应分析[J]. 航空发动机, 2015, 41(2):50-54. KANG L, HONG J, XU L, et al. Vibration response analysis of aeroengine external pipelines[J]. Aeroengine, 2015, 41(2):50-54(in Chinese).
[37] 赵爽. 航空发动机外部管路的动力学特性及流固耦合分析[D]. 南京:南京航空航天大学, 2014:11-36. ZHAO S. Dynamics of aero-engine external piping and fluid-structure interaction analysis[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:11-36(in Chinese).
[38] 柴清东, 付强, 马辉, 等. 单-双联卡箍管路系统建模及动力学特性分析[J]. 振动与冲击, 2020, 39(19):114-120. CHAI Q D, FU Q, MA H, et al. Modeling and dynamic characteristics analysis for a pipeline system with single double-clamp[J]. Journal of Vibration and Shock, 2020, 39(19):114-120(in Chinese).
[39] 赵伟志, 陈志英. 燃油管路系统振动特性有限元模拟技术[J]. 航空发动机, 2016, 42(1):42-47. ZHAO W Z, CHEN Z Y. Research on finite element simulation technology of fuel pipe system vibration characteristics[J]. Aeroengine, 2016, 42(1):42-47(in Chinese).
[40] 朴玉华. 航空发动机外部管路建模与动力学特性研究[D]. 沈阳:东北大学, 2018:61-89. PIAO Y H. Research on modeling and dynamic characteristics of aero-engine external pipes[D]. Shenyang:Northeastern University, 2018:61-89(in Chinese).
[41] 李占营, 王建军, 邱明星. 航空发动机管路流固耦合振动的固有频率分析[J]. 航空发动机, 2017, 43(1):66-70. LI Z Y, WANG J J, QIU M X. Analysis for natural frequencies of pipe conveying fluid considering fluid-structure interaction[J]. Aeroengine, 2017, 43(1):66-70(in Chinese).
[42] 李占营, 王建军, 邱明星. 航空发动机空间管路系统的流固耦合振动特性[J]. 航空动力学报, 2016, 31(10):2346-2352. LI Z Y, WANG J J, QIU M X. Dynamic characteristics of aero-engine pipe system considering fluid-structure coupling[J]. Journal of Aerospace Power, 2016, 31(10):2346-2352(in Chinese).
[43] 李占营, 王建军, 邱明星. 基于有限元法的输液管路稳定性可靠性研究[J]. 航空动力学报, 2017, 32(12):2903-2909. LI Z Y, WANG J J, QIU M X. Research on stability reliability of pipe conveying fluid based on finite element method[J]. Journal of Aerospace Power, 2017, 32(12):2903-2909(in Chinese).
[44] 李继世, 张大义, 王立, 等. 考虑流体介质影响的管路模态特性分析[J]. 航空动力学报, 2019, 34(3):671-677. LI J S, ZHANG D Y, WANG L, et al. Modal characteristics analysis for pipelines considering influence of fluid medium[J]. Journal of Aerospace Power, 2019, 34(3):671-677(in Chinese).
[45] 陈果, 罗云, 郑其辉, 等. 复杂空间载流管道系统流固耦合动力学模型及其验证[J]. 航空学报, 2013, 34(3):597-609. CHEN G, LUO Y, ZHENG Q H, et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):597-609(in Chinese).
[46] GAO P X, ZHAI J Y, YAN Y Y, et al. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft[J]. Aerospace Science and Technology, 2016, 49:144-153.
[47] GAO P X, ZHANG Y L, LIU X F, et al. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method[J]. Journal of Mechanical Science and Technology, 2020, 34(8):3137-3146.
[48] GAO P X, ZHAI J Y, QU F Z, et al. Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(8):1529-1541.
[49] DING H, JI J C, CHEN L Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics[J]. Mechanical Systems and Signal Processing, 2019, 121:675-688.
[50] TAN X, DING H. Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids[J]. Journal of Sound and Vibration, 2020, 485:115594.
[51] TAN X, DING H, CHEN L Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model[J]. Journal of Sound and Vibration, 2019, 455:241-255.
[52] 权凌霄, 孔祥东, 俞滨, 等. 液压管路流固耦合振动机理及控制研究现状与发展[J]. 机械工程学报, 2015, 51(18):175-183. QUAN L X, KONG X D, YU B, et al. Research status and trends on fluid-structure interaction vibration mechanism and control of hydraulic pipeline[J]. Journal of Mechanical Engineering, 2015, 51(18):175-183(in Chinese).
[53] OUYANG X P, GAO F, YANG H Y, et al. Two-dimensional stress analysis of the aircraft hydraulic system pipeline[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2012, 226(5):532-539.
[54] OUYANG X P, GAO F, YANG H Y, et al. Modal analysis of the aircraft hydraulic-system pipeline[J]. Journal of Aircraft, 2012, 49(4):1168-1174.
[55] ZHANG Q W, KONG X D, HUANG Z P, et al. Fluid-structure-interaction analysis of an aero hydraulic pipe considering friction coupling[J]. IEEE Access, 2019, 7:26665-26677.
[56] 权凌霄, 孙冰江, 赵劲松, 等. 航空弯曲液压管路流固耦合振动频响分析[J]. 西北工业大学学报, 2018, 36(3):487-495. QUAN L X, SUN B J, ZHAO J S, et al. Frequency response analysis of fluid-structure interaction vibration in aircraft bending hydraulic pipe[J]. Journal of Northwestern Polytechnical University, 2018, 36(3):487-495(in Chinese).
[57] FERRAS D, MANSO P, SCHLEISS A, et al. One-dimensional fluid-structure interaction models in pressurized fluid-filled pipes:A review[J]. Applied Sciences, 2018, 8(10):1844.
[58] 郭长虹, 郭海鑫, 权凌霄, 等. 航空液压管路流固耦合振动传递矩阵模型分析[J]. 高技术通讯, 2017, 27(S2):966-974. GUO C H, GUO H X, QUAN L X, et al. Fluid-solid coupling vibration transfer matrix model analysis of aviation hydraulic pipeline[J]. Chinese High Technology Letters, 2017, 27(Sup 2):966-974(in Chinese).
[59] 焦宗夏. 飞机液压能源管路系统的振动特性分析[J]. 北京航空航天大学学报, 1997, 23(3):316-321. JIAO Z X. Vibration analysis of the aircraft fluid power and pipeline systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(3):316-321(in Chinese).
[60] XU Y Z, JIAO Z X. Exact solution of axial liquid-pipe vibration with time-line interpolation[J]. Journal of Fluids and Structures, 2017, 70:500-518.
[61] 李军, 陈明, 赵怀军. 液压脉冲系统的压力瞬态脉动仿真研究[J]. 机床与液压, 2007, 35(1):122-124, 164. LI J, CHEN M, ZHAO H J. Simulation research of transient impulse of pressure in hydraulic impulse system[J]. Machine Tool & Hydraulics, 2007, 35(1):122-124, 164(in Chinese).
[62] 张乐迪, 张显余. 飞机液压管道流固耦合振动特性及动响应分析[J]. 科学技术与工程, 2014, 14(28):153-158. ZHANG L D, ZHANG X Y. Aircraft hydraulic piping vibration characteristics of fluid-structure coupling and dynamic response analysis[J]. Science Technology and Engineering, 2014, 14(28):153-158(in Chinese).
[63] 周红, 刘永寿, 邵小军, 等. 飞机液压管路冲击响应分析[J]. 航空计算技术, 2010, 40(4):1-3. ZHOU H, LIU Y S, SHAO X J, et al. Hammer response analysis in airplane hydraulic pipeline[J]. Aeronautical Computing Technique, 2010, 40(4):1-3(in Chinese).
[64] GAO P X, ZHAI J Y, HAN Q K. Dynamic response analysis of aero hydraulic pipeline system under pump fluid pressure fluctuation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(5):1585-1595.
[65] GAO P X, QU H Q, ZHANG Y L, et al. Experimental and numerical vibration analysis of hydraulic pipeline system under multiexcitations[J]. Shock and Vibration, 2020, 2020:3598374.
[66] LIU X D, SUN W, GAO Y, et al. Optimization of pipeline system with multi-hoop supports for avoiding vibration, based on particle swarm algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(9):1524-1538.
[67] 贾志刚, 陈志英. 基于参数化的航空发动机管路调频方法研究[J]. 航空发动机, 2008, 34(4):34-37. JIA Z G, CHEN Z Y. Investigation of frequency modulation for aeroengine pipeline based on parameterization[J]. Aeroengine, 2008, 34(4):34-37(in Chinese).
[68] 郭家良, 王维, 贾文强, 等. 航空发动机外部管路调频方法研究[J]. 航空发动机, 2017, 43(6):33-38. GUO J L, WANG W, JIA W Q, et al. Investigation on frequency modulation methods of aeroengine external pipe[J]. Aeroengine, 2017, 43(6):33-38(in Chinese).
[69] 李会娜, 高庆, 江雅婷, 等. 发动机长悬臂管路动力学特性优化及试验验证[J]. 航天器环境工程, 2015, 32(4):400-403. LI H N, GAO Q, JIANG Y T, et al. Dynamics optimization and experimental validation of the long cantilever engine pipelines[J]. Spacecraft Environment Engineering, 2015, 32(4):400-403(in Chinese).
[70] GAO P X, LI J W, ZHAI J Y, et al. A novel optimization layout method for clamps in a pipeline system[J]. Applied Sciences, 2020, 10(1):390.
[71] ZHAI H B, LI B H, JIANG Z F, et al. Supports' dynamical optimized design for the external pipeline of aircraft engine[J]. Advanced Materials Research, 2010, 139-141:2456-2459.
[72] 冯凯, 郝勇, 廉正彬. 航空发动机外部管路调频的有限元计算方法[J]. 航空发动机, 2010, 36(1):31-33, 19. FENG K, HAO Y, LIAN Z B. Finite element analysis method of frequency modulation for aeroengine external lines[J]. Aeroengine, 2010, 36(1):31-33, 19(in Chinese).
[73] 於为刚, 赵正大, 陈果, 等. 一种管道卡箍位置自动优化方法[J]. 噪声与振动控制, 2019, 39(1):29-33, 40. YU W G, ZHAO Z D, CHEN G, et al. An automatic optimization method of pipeline clamp positions[J]. Noise and Vibration Control, 2019, 39(1):29-33, 40(in Chinese).
[74] 柳强, 焦国帅. 基于Kriging模型和NSGA-Ⅱ的航空发动机管路卡箍布局优化[J]. 智能系统学报, 2019, 14(2):281-287. LIU Q, JIAO G S. Layout optimization of aero-engine pipe clamps based on Kriging model and NSGA-Ⅱ[J]. Transactions on Intelligent Systems, 2019, 14(2):281-287(in Chinese).
[75] 陈艳秋, 朱梓根. 基于遗传算法的航空发动机管路优化设计[J]. 航空动力学报, 2002, 17(4):421-425. CHEN Y Q, ZHU Z G. Piping system design of aero-engine using genetic algorithms[J]. Journal of Aerospace Power, 2002, 17(4):421-425(in Chinese).
[76] ZHANG X T, LIU W, ZHANG Y M, et al. Experimental investigation and optimization design of multi-support pipeline system[J]. Chinese Journal of Mechanical Engineering, 2021, 34:10.
[77] 李鑫, 王少萍. 基于卡箍优化布局的飞机液压管路减振分析[J]. 振动与冲击, 2013, 32(1):14-20. LI X, WANG S P. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J]. Journal of Vibration and Shock, 2013, 32(1):14-20(in Chinese).
[78] 彭刚, 于乃江, 贾文强. 航空发动机外部管路的结构与动力学特征参数分析[J]. 航空发动机, 2017, 43(5):1-6. PENG G, YU N J, JIA W Q. Analysis of structural and dynamical characteristic parameters of external pipes for aeroengine[J]. Aeroengine, 2017, 43(5):1-6(in Chinese).
[79] 刘伟, 曹刚, 翟红波, 等. 发动机管路卡箍位置动力灵敏度分析与优化设计[J]. 航空动力学报, 2012, 27(12):2756-2762. LIU W, CAO G, ZHAI H B, et al. Sensitivity analysis and dynamic optimization design of supports' positions for engine pipelines[J]. Journal of Aerospace Power, 2012, 27(12):2756-2762(in Chinese).
[80] 徐培原, 刘伟. 发动机外部管路系统的卡箍布局多目标优化[J]. 航空发动机, 2020, 46(6):46-52. XU P Y, LIU W. Multi-objective optimization of clamps layout for engine external pipeline system[J]. Aeroengine, 2020, 46(6):46-52(in Chinese).
[81] ZHANG Z, ZHOU C C, WANG W X, et al. Optimization design of aeronautical hydraulic pipeline system based on non-probabilistic sensitivity analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part O:Journal of Risk and Reliability, 2019, 233(5):815-825.
[82] WANG W X, ZHOU C C, GAO H S, et al. Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines[J]. Structural and Multidisciplinary Optimization, 2018, 57(6):2177-2191.
[83] TANG Z C, LU Z Z, LI D W, et al. Optimal design of the positions of the hoops for a hydraulic pipelines system[J]. Nuclear Engineering and Design, 2011, 241(12):4840-4855.
[84] KWONG A M, EDGE K A. A method to reduce noise in hydraulic systems by optimizing pipe clamp locations[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 1998, 212(4):267-280.
[85] LIU Q, WANG C G. A graph-based pipe routing algorithm in aero-engine rotational space[J]. Journal of Intelligent Manufacturing, 2015, 26(6):1077-1083.
[86] LIU Q, WANG C G. Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation[J]. Enterprise Information Systems, 2012, 6(3):315-327.
[87] WANG C G, LIU Q. Projection and geodesic-based pipe routing algorithm[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(3):641-645.
[88] LIU Q. A rectilinear pipe routing algorithm:Manhattan visibility graph[J]. International Journal of Computer Integrated Manufacturing, 2016, 29(2):202-211.
[89] LIU Q, JIAO G S. A pipe routing method considering vibration for aero-engine using kriging model and NSGA-II[J]. IEEE Access, 2018, 6:6286-6292.
Outlines

/