Special Topic: Application of Fault Diagnosis Technology in Aerospace Field

Fault diagnosis method of rotor rub impact based on blade tip timing

  • WANG Weimin ,
  • CHEN Ziwen ,
  • ZHANG Xulong ,
  • CHEN Kang
Expand
  • 1. Beijing Key Laboratory of Health Monitoring and Self-Recovery for High-End Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Key Laboratory of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2020-11-30

  Revised date: 2021-02-26

  Online published: 2021-02-24

Supported by

National Key Research and Development Program (2020YFB2010803);National Natural Science Foundation of China (51775030,91860126)

Abstract

Aero-engine rotor static rub impact will not only affect the bending vibration of the rotor, but also cause obvious torsional vibration of the rotor. Therefore, rub impact fault can be diagnosed by monitoring the changes of torsional vibration. Here, a rub impact fault diagnosis method based on improved blade tip timing is proposed. The rub impact fault diagnosis and early warning is carried out by monitoring the change of rotor torsional vibration. To solve the problem of inaccurate measurement results of torsional vibration caused by the blade spacing error, a correction method is proposed considering the uneven spacing error caused by blade assembly and blade vibration. The experiment results show that the measurement results of the improved blade tip timing method are consistent with those of the encoder, and can accurately monitor the speed fluctuation caused by rub impact. The correctness of the improved method and the practicability of the improved blade end timing method in rub impact fault diagnosis are verified.

Cite this article

WANG Weimin , CHEN Ziwen , ZHANG Xulong , CHEN Kang . Fault diagnosis method of rotor rub impact based on blade tip timing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(8) : 625031 -625031 . DOI: 10.7527/S1000-6893.2021.25031

References

[1] 杨洋. 碰摩力模型研究及其在转子—机匣系统中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2016. YANG Y. Investigation of rub-impact force model and its applications in rotor-casing system[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
[2] YANG Y, OUYANG H J, WU X L, et al. Bending-torsional coupled vibration of a rotor-bearing-system due to blade-casing rub in presence of non-uniform initial gap[J]. Mechanism and Machine Theory, 2019, 140: 170-193.
[3] VARNEY P, GREEN I. Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor-stator contact system[J]. Journal of Sound and Vibration, 2015, 336: 207-226.
[4] 张娅, 陈康, 王维民, 等. 考虑气流激振下汽轮机转子系统碰摩动力学特性研究[J]. 北京化工大学学报(自然科学版), 2019, 46(1): 76-83. ZHANG Y, CHEN K, WANG W M, et al. The dynamic behavior of the rotor system of a steam turbine subjected to rub-impact and fluid excitation at different locations[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2019, 46(1): 76-83 (in Chinese).
[5] 张力, 马艳红, 梁智超, 等. 转子系统碰摩约束模型与振动响应分析[J]. 北京航空航天大学学报, 2015, 41(9): 1631-1637. ZHANG L, MA Y H, LIANG Z C, et al. Constraint model and vibration response analysis of rotor rub-impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1631-1637 (in Chinese).
[6] 郭旭民, 孙祺, 马辉, 等. 旋转叶片-柔性机匣碰摩振动响应分析[J]. 振动与冲击, 2019, 38(5): 162-168. GUO X M, SUN Q, MA H, et al. Rub vibration responses of rotating blade and flexible casing[J]. Journal of Vibration and Shock, 2019, 38(5): 162-168 (in Chinese).
[7] 马辉, 太兴宇, 汪博, 等. 柔性转子系统轮盘外缘定点碰摩动力学特性分析[J]. 中国电机工程学报, 2012, 32(17): 89-96, 149. MA H, TAI X Y, WANG B, et al. Dynamic characteristic analysis of a flexible rotor system with fixed-point rubbing fault at a wheel edge[J]. Proceedings of the CSEE, 2012, 32(17): 89-96, 149 (in Chinese).
[8] 侯理臻, 廖明夫, 王四季, 等. 航空发动机转子不平衡下转静碰摩试验研究[J]. 振动与冲击, 2019, 38(22): 14-20, 43. HOU L Z, LIAO M F, WANG S J, et al. Experimental study on the aero-engine rotor-stator rubbing in imbalance[J]. Journal of Vibration and Shock, 2019, 38(22): 14-20, 43 (in Chinese).
[9] 秦海勤, 张耀涛, 徐可君. 双转子-支承-机匣耦合系统碰摩振动响应分析及试验验证[J]. 机械工程学报, 2019, 55(19): 75-83. QIN H Q, ZHANG Y T, XU K J. Rubbing vibration response theoretical analysis and experimental verification for a double rotor support casing system[J]. Journal of Mechanical Engineering, 2019, 55(19): 75-83 (in Chinese).
[10] MUSZYNSKA A. Rotor-to-stationary element rubbing-related vibration phenomena in rotating machinery: Literature survey[J]. The Shock and Vibration Digest, 1989, 21(3): 3-11.
[11] 廖明夫, 宋明波, 张霞妹. 转子/机匣碰摩引起的转子弯扭耦合振动[J]. 振动、测试与诊断, 2016, 36(5): 1009-1017, 1031. LIAO M F, SONG M B, ZHANG X M. Coupled bending and torsional vibration due to rotor-casing contact[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 1009-1017, 1031 (in Chinese).
[12] 黄巍, 王卫国, 李敏, 等. 某型航空发动机低压涡轮碰摩故障分析[C]//第十七届全国设备故障诊断学术会议论文集. 福州: 福州大学, 2020: 8-21. HUANG W, WANG W G, LI M, et al. Fault analysis of low pressure turbine rubbing in an aircraft engine[C]//Proceedings of the 17th National Equipment Fault Diagnosis Academic Conference. Fuzhou: Fuzhou University, 2020: 8-21 (in Chinese).
[13] ROQUES S, LEGRAND M, CARTRAUD P, et al. Modeling of a rotor speed transient response with radial rubbing[J]. Journal of Sound and Vibration, 2010, 329(5): 527-546.
[14] 焦旭东. 航空发动机振动机理和分析转子故障振动信号特征[J]. 粘接, 2019, 40(10): 123-125. JIAO X D. Vibration mechanism of aeroengine and analysis of rotor fault vibration signal characteristics[J]. Adhesion, 2019, 40(10): 123-125 (in Chinese).
[15] MA X X, MA H, ZENG J, et al. Rubbing-induced vibration response analysis of dual-rotor-casing system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018(1): 101-108.
[16] EDWARDS S, LEES A W, FRISWELL M I. The influence of torsion on rotor/stator contact in rotating machinery[J]. Journal of Sound and Vibration, 1999, 225(4): 767-778.
[17] 邓小文, 廖明夫, ROBERT L, 等. 双盘转子碰摩的弯曲和扭转振动实验研究[J]. 航空动力学报, 2002, 17(2): 205-211. DENG X W, LIAO M F, ROBERT L, et al. Experimental research of bending and torsional vibrations of a double disc rotor due to rotor-to-stator contacts[J]. Journal of Aerospace Power, 2002, 17(2): 205-211 (in Chinese).
[18] 邓小文, 廖明夫, ROBERT L, 等. 碰摩转子的弯曲和扭转振动分析[J]. 航空动力学报, 2002, 17(1): 97-104. DENG X W, LIAO M F, ROBERT L, et al. Coupled bending and torsional vibrations due to rotor-to-stator contacts[J]. Journal of Aerospace Power, 2002, 17(1): 97-104 (in Chinese).
[19] 张天程, 曹树谦, 李利青, 等. 碰摩双转子系统弯扭耦合振动分析与实验[J]. 航空动力学报, 2019, 34(3): 643-655. ZHANG T C, CAO S Q, LI L Q, et al. Analysis and experiment of coupled bending and torsional vibration of a rub-impact dual-rotor system[J]. Journal of Aerospace Power, 2019, 34(3): 643-655 (in Chinese).
[20] WANG W M, ZHANG X L, HU D F, et al. A novel none once per revolution blade tip timing based blade vibration parameters identification method[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1953-1968.
[21] 王维民, 张旭龙, 陈康, 等. 大型轴流压气机叶片无键相振动监测与故障预警方法[J]. 振动与冲击, 2019, 38(23): 54-61, 118. WANG W M, ZHANG X L, CHEN K, et al. Vibration monitoring and fault pre-warning method for large axial compressor blades without OPR sensor[J]. Journal of Vibration and Shock, 2019, 38(23): 54-61, 118 (in Chinese).
[22] CHEN K, WANG W M, ZHANG X L, et al. New step to improve the accuracy of blade tip timing method without once per revolution[J]. Mechanical Systems and Signal Processing, 2019, 134: 106321.
[23] 翟功涛, 王维民, 陈子文, 等. 基于叶端定时的转子扭转振动监测方法及系统研究[J]. 风机技术, 2019, 61(3): 40-47. ZHAI G T, WANG W M, CHEN Z W, et al. Research on monitoring method and system of rotor torsional vibration based on tip timing[J]. Chinese Journal of Turbomachinery, 2019, 61(3): 40-47 (in Chinese).
[24] 张玉皓, 顾煜炯, 马晓腾, 等. 广义增量编码器瞬时角速度计算的扭振在线测量[J]. 仪器仪表学报, 2020, 41(10): 187-195. ZHANG Y H, GU Y J, MA X T, et al. On line torsional vibration measurement based on generalized incremental encoder instantaneous angular speed calculation[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 187-195 (in Chinese).
[25] LI Y H, GU F S, HARRIS G, et al. The measurement of instantaneous angular speed[J]. Mechanical Systems and Signal Processing, 2005, 19(4): 786-805.
[26] RESOR B R, TRETHEWEY M W, MAYNARD K P. Compensation for encoder geometry and shaft speed variation in time interval torsional vibration measurement[J]. Journal of Sound and Vibration, 2005, 286(4-5): 897-920.
Outlines

/