Electronics and Electrical Engineering and Control

Relative pose estimation and optimization of a failure satellite with low-light few-shot images

  • LIU Fucheng ,
  • MU Jinzhen ,
  • LIU Zongming ,
  • HAN Fei ,
  • LI Shuang
Expand
  • 1. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China;
    2. Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China;
    3. Shanghai Key Laboratory of Space Intelligent Control Technology, Shanghai 201109, China;
    4. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-11-18

  Revised date: 2020-12-22

  Online published: 2021-02-08

Supported by

National Key Research and Development Program (2016YFB0501003); National Natural Science Foundation of China (61690214, 11972182); Shanghai Scientific Research Program (19511120900, 19YF1420200)

Abstract

The serious damage of information in images under a low-light imaging condition may reduce the accuracy and robustness of the pose estimation of a failure satellite. Thus, this paper proposes an unsupervised Generative Adversarial Network (GAN)-based low-light image enhancement model. The generator is based on the U-Net with dense residual connection. The discriminator is designed as a global-local structure, and the traditional single scalar output of the discriminator is extended to the multiple scalar output. The single natural image Generative Adversarial Network (SinGAN) is improved based on evolutionary and parallel training methods to augment the few-shot training samples. Finally, a local map of feature information is established based on initialization of ORB-SLAM to alleviate dependence of pose estimation on reference frame. Through dense matching of Region of Interest (ROI) in key-frames, a nonlinear optimization model of the normal vector of plane and the mounting height of monocular camera is established to solve the scale factor. Through the similarity transformation after closed-loop detection, an equation for combined pose optimization in key-frames is established to achieve global correction of the pose transformation matrix. The experimental results show that the maximum error of the attitude angle is 4° in low-light images, while the maximum error of the attitude angle is 0.5°in enhanced images. When the target is rotating 5 cycles at 20°/s, our method can track 5 cycles in relatively static state, and 4.5 cycles in the range of 1 m horizontal maneuver. Hence, the proposed method can satisfy the need for relative pose measurement of failure satellites.

Cite this article

LIU Fucheng , MU Jinzhen , LIU Zongming , HAN Fei , LI Shuang . Relative pose estimation and optimization of a failure satellite with low-light few-shot images[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(4) : 524984 -524984 . DOI: 10.7527/S1000-6893.2021.24984

References

[1] OPROMOLLA R, FASANO G, RUFFINO G. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017, 93:53-72.
[2] 刘付成. 人工智能在航天器控制中的应用[J].飞控与探测, 2018, 1(1):16-25. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight control and detection, 2018, 1(1):16-25(in Chinese).
[3] 岳晓奎, 张滕. 在轨服务软体机器人应用展望[J]. 飞控与探测, 2020, 3(1):1-7. YUE X K, ZHANG T. Soft robots for on-orbit service[J]. Flight Control & Detection, 2020, 3(1):1-7(in Chinese).
[4] 范斌, 于起峰. 卫星平台运动对高分辨率光学遥感成像系统影响分析[J]. 中国空间科学技术, 2017, 37(3):86-92. FAN B, YU Q F. Simulation analysis of platform vibration on image quality of satellite-based high-resolution optical system[J]. Chinese Space Science and Technology, 2017, 37(3):86-92(in Chinese).
[5] 王大轶, 鄂薇, 邹元杰, 等. 利用非合作航天器双特征结构的相对姿态确定方法[J]. 飞控与探测, 2020, 3(1):18-26. WANG D Y, E W, ZOU Y J, et al. Relative attitude determination method of non-cooperative spacecraft using dual feature structure[J]. Flight Control & Detection, 2020, 3(1):18-26(in Chinese).
[6] 刘宗明, 曹姝清, 张宇, 等. 非合作航天器逆深度参数化姿态估计[J]. 光学精密工程, 2017, 25(2):451-459. LIU Z M, CAO S Q, ZHANG Y, et al. Inverse depth parametrization for attitude estimation of a non-cooperative spacecraft[J]. Optics and Precision Engineering, 2017, 25(2):451-459(in Chinese).
[7] ZHOU Z, SANG N, HU X. Global brightness and local contrast adaptive enhancement for low illumination color image[J]. Optik, 2014, 125(6):1795-1799.
[8] LIN S C F, WONG C Y, RAHMAN M A, et al. Image enhancement using the averaging histogram equalization (AVHEQ) approach for contrast improvement and brightness preservation[J]. Computers & Electrical Engineering, 2015, 46:356-370.
[9] LV F, LU F. Attention-guided low-light image enhancement[J]. arXiv preprint:1908.00682, 2019.
[10] GUO X, LI Y, LING H. LIME:Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2):982-993.
[11] WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement[C]//British Machine Vision Conference, 2018.
[12] GUO Y, KE X, MA J, et al. A pipeline neural network for low-light image enhancement[DB/OL]. IEEE Access, 2019, 7:13737-13744.
[13] JIANG Y, GONG X, LIU D, et al. Enlightengan:Deep light enhancement without paired supervision[DB/OL]arXiv:1906.06972,2019.
[14] 江泽涛, 覃露露. 一种基于U-Net生成对抗网络的低照度图像增强方法[J]. 电子学报, 2020, 48(2):258-264. JIANG Z T, QIN L L. Low-light image enhancement method based on U-Net generative adversarial network[J]. Acta Electronic Sinica, 2020, 48(2):258-264(in Chinese).
[15] 陈榆琅, 高晶敏, 张科备, 等. 基于生成对抗网络的空间卫星低照度图像增强[J/OL]. 中国空间科学技术, 2020,https://kns.cnki.net/kcms/detail/11.1859.V.20200921.1709.002.html. CHEN Y L, GAO J M, ZHANG K, ZHANG Y. Low-light image enhancement of space satellites based on GAN[J/OL]. Chinese Space Science and Technology, 2020, https://kns.cnki.net/kcms/detail/11.1859.V.20200921.1709.002.html (in Chinese).
[16] GUO C L, LI C Y, HUO J C. Zero-reference deep curve estimation for low-light Image enhancement[DB/OL]. arXiv preprint:2001.06826v2,2020.
[17] 朱晏辰. 基于SLAM的非合作目标相对位姿测量研究[D].哈尔滨:哈尔滨工业大学, 2018. ZHU Y C. Research on measurement of relative pose for non-cooperative space targets based on SLAM[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[18] 周朋博, 刘晓峰, 蔡国平. 基于ORB-SLAM的低照度空间非合作目标的姿态估计[J]. 动力学与控制学报, 2021,19(1):68-74. ZHOU P B, LIU X F, CAI G P. Attitude estimation of an non-cooperative spacecraft in low-light condition based on ORB-SLAM[J]. Journal of Dynamic and Control, 2021,19(1):68-74(in Chinese).
[19] MEHREGAN D, PANAGIOTIS T. ORB-SLAM applied to spacecraft non-cooperative rendezvous[C]//AIAA SciTech Forum, 2018 Space Flight Mechanics Meeting, 2018.
[20] 高翔, 张涛. 视觉SLAM十四讲从理论到实践[M]. 北京:电子工业出版社, 2017:64-76. GAO X, ZHANG T. Visual SLAM 14 lectures from theory to practice[M]. Beijing:Electronic Industry Press, 2017:64-76(in Chinese).
[21] XIANG L Y B, DENG Y B, DAI B, et al. Real or not real, that is the question[C]//International Conference on Machine Learning (ICML), 2020.
[22] TAMAR R, TALI D, TOMER M. SinGAN:Learning a generative model from a single natural image[C]//IEEE International Conference on Computer Vision, 2019.
[23] WANG C Y, CHANG X, XIN Y. Evolutionary generative adversarial networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23:921-934.
[24] CARLOS C, RICHARD E, JUAN J, et al. ORB-SLAM3:An accurate open-source library for visual, visual-inertial and multi-map SLAM[EB/OL]. arXiv preprint:2007.11898,2020.
[25] 向奉卓, 李广云, 王力, 等. 具备尺度恢复的单目视觉里程计方法[J]. 测绘科学技术学报, 2018, 35(5):462-466. XIANG F Z, LI G Y, WANG L, et al. Monocular visual odometry with absolute scale recovery[J]. Journal of Geomatics Science and Technology, 2018, 35(5):462-466(in Chinese).
[26] 刘宗明, 张宇, 卢山, 等. 非合作旋转目标闭环检测与位姿优化[J]. 光学精密工程, 2017, 25(4):504-511. LIU Z M, ZHANG Y, LU S, et al. Closed-loop detection and pose optimization of non-cooperation rotating targets[J]. Optics and Precision Engineering, 2017, 25(4):504-511(in Chinese).
[27] 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报, 2014, 35(8):2251-2260. YU H, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2251-2260(in Chinese).
Outlines

/