Material Engineering and Mechanical Manufacturing

Prediction of dangerous point of thermal barrier coating by biaxial stress state analysis

  • YAO Yudong ,
  • AI Yanting ,
  • SONG Chun ,
  • GUAN Peng ,
  • TIAN Jing
Expand
  • 1. Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aircraft Propulsion System, Shenyang Aerospace University, Shenyang 110136, China;
    2. China Academy of Aerospace Liquid Propulsion Technology, Xi’an 710100, China

Received date: 2020-11-02

  Revised date: 2021-02-03

  Online published: 2021-02-02

Supported by

National Natural Science Foundation of China (11702177);Natural Science Foundation of Liaoning Province (2020-BS-174);Project of Department of Education of Liaoning Province (JYT2020019)

Abstract

The spallation life cycle of thermal barrier coat (TBC) is a key factor for failure in one operating period of the aircraft engine. Research on the thermal fatigue life (TFL) of TBC has great significance for prolonging the service life of engine. An effective failure analysis method for TBC is performed using biaxial stress state analysis, finite element method, phenomenology theory, and linear cumulative damage model. It is demonstrated that with the increase of thermally grown oxide layer thickness, the position of the maximum thermal stress moves from peak to valley along the cosine curve of the top coat. Comparing with the traditional stress analysis method, the biaxial stress state analysis method is more suitable to predict the accurate position of the risk point, because the position of the normal stress peak and shear stress peak calculated by biaxial stress state analysis method is closer to each other. Based on the phenomenology theory and linear cumulative damage model, the accurate position of the risk point is determined at 3/10 of the axial distance from the peak to valley of the top coat. The predicted position of risk point is basically consistent with the normal crack location inside the top layer of TBC, which can verify the accuracy of the failure analysis method proposed in this paper.

Cite this article

YAO Yudong , AI Yanting , SONG Chun , GUAN Peng , TIAN Jing . Prediction of dangerous point of thermal barrier coating by biaxial stress state analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 424937 -424937 . DOI: 10.7527/S1000-6893.2021.24937

References

[1] 贾贝熙, 吕震宙, 雷婧宇. 涡轮叶片寿命可靠性分析的参数化仿真平台[J]. 航空学报, 2021, 42(12): 224747. JIA B X, LYU Z Z, LEI J Y. Parameterized simulation platform of turbine blade life reliability analysis[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 224747(in Chinese).
[2] 杨寓全, 刘存良, 张杰, 等. 分腔流量比对涡轮曲端壁表面冷却特性实验[J]. 航空学报, 2021, 42(7): 124399. YANG Y Q, LIU C L, ZHANG J, et al. Effect ofmass flow ratios on film cooling characteristics of endwall: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124399(in Chinese).
[3] MILLER R A. Current status of thermal barrier coatings—An overview[J]. Surface and Coatings Technology, 1987, 30(1): 1-11.
[4] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干关键问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98. HAN M, HUANG J H, CHEN S H. Researchprogress and review on key problems of stress and failure mechanism of thermal barrier coating[J]. Journal of Aeronautical Materials, 2013, 33(5): 83-98(in Chinese).
[5] HE M Y, MUMM D R, EVANS A G. Criteria for the delamination of thermal barrier coatings: With application to thermal gradients[J]. Surface and Coatings Technology, 2004, 185(2-3): 184-193.
[6] 刘建华, 刘永葆, 贺星, 等. 涡轮叶片多层结构热障涂层隔热效果分析[J]. 航空发动机, 2017, 43(4): 1-6. LIU J H, LIU Y B, HE X, et al. Analyzing ofthermal insulation of thermal barrier coatings of a turbine vane[J]. Aeroengine, 2017, 43(4): 1-6(in Chinese).
[7] SCHULZ U, LEYENS C, FRITSCHER K, et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1): 73-80.
[8] 刘福顺, 宫声凯, 徐惠彬. 大功率EB-PVD陶瓷热障涂层的研究与应用[J]. 航空学报, 2000, 21(S1): 80-84. LIU F S, GONG S K, XU H B. Recent development in thermal barrier coatings prepared by EB-PVD[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(S1): 80-84(in Chinese).
[9] 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1): 7-12. XU H B, GONG S K, LIU F S. Recent development in materials design of thermal barrier coatings for gasturbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 7-12(in Chinese).
[10] SCHLICHTING K W, PADTURE N P, JORDAN E H, et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering: A, 2003, 342(1-2): 120-130.
[11] BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation[J]. Acta Materialia, 2001, 49(9): 1515-1528.
[12] RABIEI A, EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2000, 48(15): 3963-3976.
[13] AHRENS M, VAÖEN R, STÖVER D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J]. Surface and Coatings Technology, 2002, 161(1): 26-35.
[14] RANJBAR-FAR M, ABSI J, MARIAUX G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials & Design, 2010, 31(2): 772-781.
[15] EVANS H E. Oxidation failure of TBC systems: An assessment of mechanisms[J]. Surface and Coatings Technology, 2011, 206(7): 1512-1521.
[16] 魏洪亮, 杨晓光, 齐红宇, 等. 等离子涂层热疲劳失效模式及失效机理研究[J]. 航空动力学报, 2008, 23(2): 270-275. WEI H L, YANG X G, QI H Y, et al. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power, 2008, 23(2): 270-275(in Chinese).
[17] 魏洪亮, 杨晓光, 齐红宇. 等离子涂层涡轮导向叶片热疲劳寿命预测研究[J]. 航空动力学报, 2008, 23(1): 1-8. WEI H L, YANG X G, QI H Y. Study on thermal fatigue life prediction for plasma sprayed thermal barrier coatings on the surface of turbine vane[J]. Journal of Aerospace Power, 2008, 23(1): 1-8(in Chinese).
[18] GUAN P, AI Y T, FEI C W, et al. Thermal fatigue life prediction of thermal barrier coat on nozzle guide vane via master-slave model[J]. Applied Sciences, 2019, 9(20): 4357.
[19] 刘鸿文. 材料力学I[M]. 5版. 北京: 高等教育出版社, 2004: 216-234. LIU H W. Mechanics of materials I[M]. 5th ed. Beijing: Higher Education Press, 2004: 216-234(in Chinese).
[20] 杨晓光, 耿瑞, 周燕佩. 热障涂层氧化和热疲劳寿命实验研究[J]. 航空动力学报, 2003, 18(2): 195-200. YANG X G, GENG R, ZHOU Y P. Anexperimental study of oxidation and thermal fatigue of TBC[J]. Journal of Aerospace Power, 2003, 18(2): 195-200(in Chinese).
[21] 杨晓光, 耿瑞, 周燕佩. 热障涂层热疲劳寿命预测方法研究[J]. 航空动力学报, 2003, 18(2): 201-205. YANG X G, GENG R, ZHOU Y P. Astudy of thermal fatigue life prediction of TBC[J]. Journal of Aerospace Power, 2003, 18(2): 201-205(in Chinese).
[22] 《中国航空材料手册》编委会. 中国航空材料手册(第二卷)变形高温合金、铸造高温合金[M]. 北京: 中国标准出版社, 2001: 765-771. Editorial Committee of China Aviation Materials Manual. Handbook of aeronautical materials of China (Volume II):Wrought and cast superalloys[M]. Beijing: China Standard Press, 2001: 765-771(in Chinese).
[23] VEAL B W, PAULIKAS A P, HOU P Y. Tensile stress and creep in thermally grown oxide[J]. Nature Materials, 2006, 5(5): 349-351.
[24] ZHU W, CAI M, YANG L, et al. The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J]. Surface and Coatings Technology, 2015, 276: 160-167.
[25] MEIER S M, NISSLEY D M, SHEFFLER K D, et al. Thermal barrier coating life prediction model development[C]//Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, 2015
[26] 齐红宇, 马立强, 李少林, 等. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 42(7): 67-72. QI H Y, MA L Q, LI S L, et al. High temperature thermal fatigue life prediction of plasma sprayed thermal barrier coatings structure[J]. Journal of Materials Engineering, 2014, 42(7): 67-72(in Chinese).
[27] JONNALAGADDA K P, ERIKSSON R, LI X H, et al. Thermal barrier coatings: Life model development and validation[J]. Surface and Coatings Technology, 2019, 362: 293-301.
Outlines

/