To solve the difficulty of integrated control of the relative motion spacecraft's attitude and orbit, and considering the effect of actuator fault and control input saturation, a fuzzy adaptive fixed-time fault-tolerant control method based on sliding mode is proposed. Firstly, a dynamic model of the integrated attitude and position error of the relative motion spacecraft is established and derived under the framework of Lie group SE(3). Next, considering the actuator fault and control input saturation, a fault tolerant controller with fixed time stability is designed by adopting double-power fast terminal sliding mode surface and combining with fuzzy adaptive method, which can realize high precision and fast tracking control of relative motion spacecraft under actuator fault. Then, the Lyapunov method is used to prove the stability of the system. The controller can not only realize the fixed-time stability of sliding mode approach and arrival stage independent of the initial state of the system, but also because the fuzzy approximation method combined with the adaptive update strategy can estimate the total disturbance information of the system with high accuracy in real time, so It can achieve the goal of fast and high-precision fault-tolerant control. Finally, the proposed control method is analyzed by numerical simulation, and the results verify the effectiveness and feasibility of the method.
MEI Yafei
,
LIAO Ying
,
GONG Kejie
,
LUO Da
. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(11)
: 525089
-525089
.
DOI: 10.7527/S1000-6893.2020.25089
[1] 张剑桥, 叶东, 孙兆伟. SE(3)上姿轨耦合航天器高精度快速终端滑模控制[J]. 宇航学报, 2017, 38(2):176-184. ZHANG J Q, YE D, SUN Z W. High-accuracy fast terminal sliding mode control for coupled spacecraft on SE(3)[J]. Journal of Astronautics, 2017, 38(2):176-184(in Chinese).
[2] 王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6):1933-1939. WANG H, HU Q L, SHI Z, et al. Backstepping-based finite-time fault-tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1933-1939(in Chinese).
[3] 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1):249-258. HU Q L, JIANG B Y, SHI Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):249-258(in Chinese).
[4] 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321763(in Chinese).
[5] 董宏洋. 基于对偶四元数的航天器位姿一体化控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:12-13. DONG H Y. Spacecraft integrated attitude-position control using dual quaternions[D]. Harbin:Harbin Institute of Technology, 2017:12-13(in Chinese).
[6] 朱战霞, 史格非, 樊瑞山. 航天器相对运动姿轨耦合动力学建模方法[J]. 飞行力学, 2018, 36(1):1-6. ZHU Z X, SHI G F, FAN R S. Dynamic modeling methods of attitude and orbital coupling for spacecraft relative motion[J]. Flight Dynamics, 2018, 36(1):1-6(in Chinese).
[7] STRAMIGIOLI S. Geometric control of mechanical systems:Modelling, analysis, and design for simple mechanical control systems[J]. International Journal of Robust and Nonlinear Control, 2006, 16(11):547-548.
[8] ZHANG J Q, YE D, SUN Z W, et al. Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment[J]. Acta Astronautica, 2018, 143:221-233.
[9] HESTENES D, LI H B, ROCKWOOD A. New algebraic tools for classical geometry[M]//SOMMER G. Geometric Computing with Clifford Algebras. Berlin:Springer, 2001:3-26.
[10] ACKERMANN J. Parameter space design of robust control systems[J]. IEEE Transactions on Automatic Control, 1980, 25(6):1058-1072.
[11] 刘聪, 钱坤, 李颖晖, 等. 一体化执行器饱和线性矩阵不等式跟踪容错控制器设计[J]. 控制理论与应用, 2019, 36(1):79-86. LIU C, QIAN K, LI Y H, et al. The integrated tracking fault tolerant controller design under actuator saturation with linear matrix inequality algorithm[J]. Control Theory & Applications, 2019, 36(1):79-86(in Chinese).
[12] ZHAO D, YANG H, JIANG B, et al. Attitude stabilization of a flexible spacecraft under actuator complete failure[J]. Acta Astronautica, 2016, 123:129-136.
[13] 董宏洋. 基于对偶四元数的航天器位姿一体化控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:90-105. DONG H Y. Spacecraft integrated attitude-position control using dual quaternions[D]. Harbin:Harbin Institute of Technology, 2017:90-105(in Chinese).
[14] Brodsky V, Shoham M. Dual numbers representation of rigid body dynamics[J]. Mechanism & Machine Theory, 1999, 34(5):693-718.
[15] GONG K J, LIAO Y, WANG Y. Adaptive fixed-time terminal sliding mode control on SE(3) for coupled spacecraft tracking maneuver[J]. International Journal of Aerospace Engineering, 2020, 2020:1-15.
[16] LEE D, BUTCHER E A, SANYAL A K. Sliding mode control for decentralized spacecraft formation flying using geometric mechanics[J]. Advances in the Astronautical Sciences, 2014, 150:3149-3168.
[17] LEE D, VUKOVICH G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid[J]. Aerospace Science and Technology, 2015, 46:471-483.
[18] JIANG L, WANG Y, XU S J. Integrated 6-DOF orbit-attitude dynamical modeling and control using geometric mechanics[J]. International Journal of Aerospace Engineering, 2017, 2017:4034328.
[19] LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591-3599.
[20] SHI X N, ZHANG Y A, ZHOU D, et al. Global fixed-time attitude tracking control for the rigid spacecraft with actuator saturation and faults[J]. Acta Astronautica, 2019, 155:325-333.
[21] SHI X N, ZHOU Z G, ZHOU D. Adaptive fault-tolerant attitude tracking control of rigid spacecraft on lie group with fixed-time convergence[J]. Asian Journal of Control, 2020, 22(1):423-435.
[22] 沈启坤. 基于自适应控制技术的故障诊断与容错控制研究[D]. 南京:南京航空航天大学, 2015:9-11. SHEN Q K. Study of fault diagnosis and fault tolerant control based on adaptive control technique[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:9-11(in Chinese).