Reviews

Technical development of variable camber wing: Review

  • WANG Binwen ,
  • YANG Yu ,
  • QIAN Zhansen ,
  • WANG Zhigang ,
  • LYU Shuaishuai ,
  • SUN Xiasheng
Expand
  • 1. Aircraft Strength Research Institute, Xi’an 710065, China;
    2. AVIC Aerodynamic Research Institute, Shenyang 110034, China;
    3. Chinese Aeronautical Establishment, Beijing 100029, China

Received date: 2020-11-02

  Revised date: 2020-12-15

  Online published: 2020-12-14

Abstract

The Variable Camber Wing(VCW) remains a research hot-spot as it aims to ensure that aircraft acquire optimal aerodynamic efficiency in various flight conditions. The benefits brought by VCWs are firstly presented, and the demands of VCWs from different types of aircraft are classified and thoroughly described. The developing process of VCWs in the past decades are then reviewed in terms of the leading edge and the trailing edge, respectively, and the current major obstacles in application are listed. Further research directions are finally suggested.

Cite this article

WANG Binwen , YANG Yu , QIAN Zhansen , WANG Zhigang , LYU Shuaishuai , SUN Xiasheng . Technical development of variable camber wing: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(1) : 24943 -024943 . DOI: 10.7527/S1000-6893.2020.24943

References

[1] THILL C, ETCHES J, BOND I, et al. Morphing skins[J]. The Aeronautical Journal, 2008, 112(1129): 117-139.
[2] BENSON T. Wright Brothers’ wing warping[EB/OL].(2020-11-01)[2020-11-02].http://wright.nasa.gov/airplane/warp.html
[3] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.
[4] POONSONG P. Design and analysis of a multi-section variable camber wing[D]. College Park: University of Maryland, 2004.
[5] 刘谦, 杨玉岭. 欧美变形机翼技术发展追踪[J]. 国际航空, 2020(5): 61-64. LIU Q, YANG Y L. Morphing wing technology in the US and Europe[J]. International Aviation, 2020(5): 61-64(in Chinese).
[6] VALASEK J. Morphing aerospace vehicles and structures[M]. Chichester: John Wiley & Sons, Ltd, 2012.
[7] Smart wings morphing NASA[EB/OL].(2020-11-01)[2020-11-02].https://www.youtube.com/watch?v=goL5vYjyZtM.
[8] MCGOWAN A M R,VICROY D D, HAHN R C,et al. Perspectives on highly adaptive or morphing aircraft:RTO-MP-AVT-168[R].Washington,D.C.:NASA,2009.
[9] SATTI R, LI Y B, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
[10] MONNER H, KINTSCHER M, LORKOWSKI T, et al. Design of a smart droop nose as leading edge high lift system for transportation aircrafts[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2128.
[11] RUDOLPH P K C. High-lift systems on commercial subsonic airliners:NASA-CR-4746[R]. Washington,D.C.:NASA, 1996.
[12] HORSTMANN H K. TELFONA, contribution to laminar wing development for future transport aircraft[C]//Aeronautical Days, 2006.
[13] Airbus "BLADE" laminar flow wing demonstrator makes first flight[EB/OL].(2017-09-30)[2020-11-02].https://www.airbus.com/newsroom/press-releases/en/2017/09/airbus-blade-laminar-flow-wing-demonstrator-makes-first-fligh.html
[14] KINTSCHER M, WIEDEMANN M, MONNER H P, et al. Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE[J]. International Journal of Structural Integrity, 2011, 2(4): 383-405.
[15] https://www.zhihu.com/question/355274833
[16] CONCILIO A, DIMINO I, PECORA R. SARISTU: Adaptive Trailing Edge Device(ATED) design process review[J]. Chinese Journal of Aeronautics, 2021, 34(7): 187-210.
[17] North Atlantic Systems Planning Group, "NORTH ATLANTIC MNPS AIRSPACE OPERATIONS MANUAL," Tech. rep., ICAO European and North Atlantic Office, September 2009.
[18] RISSE K, ANTON E, LAMMERING T, et al. An integrated environment for preliminary aircraft design and optimization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012: 1675.
[19] Boeing: 787 By Design[EB/OL].(2020-11-01)[2020-11-02]https://www.boeing.com/commercial/787/by-design
[20] Wings |Airbus a350 XWB[EB/OL].(2020-11-01)[2020-11-02]http://www.airbus-a350.com/the-aircraft/wings.php
[21] HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1709.
[22] GREG E C H, CHRIS J, BRIAN K,et al. Morphing aircraft design[M].Washington,D.C.: Virginia Tech Aerospace Engineering, 2002.
[23] MILLER E J,LOKOS W A, CRUZ J,et al. Approach for structurally clearing an adaptive compliant trailing edge flap for flight[C]//46th SFTE Annual International Symposium, 2015.
[24] MONNER H P, BEIN T, HANSELKA H,et al. Design aspects of the adaptive wing-the elastic trailing edge and the local spoiler bump[J]. The Aeronautical Journal, 2000, 104(1032):1-10.
[25] PETER F N, RISSE K, SCHUELTKE F, et al. Variable camber impact on aircraft mission planning[C]//53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1902.
[26] DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]//11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984: 2088.
[27] KOTA S. Future Airplanes Will Fly On Twistable Wings Replacing traditional flaps with bendable bits will reduce noise and save fuel[EB/OL].Future Airplanes Will Fly On Twistable Wings-IEEE Spectrum,2016.
[28] GILBERT W. Development of a mission adaptive wing system for a tactical aircraft[C]//Aircraft Systems Meeting. Reston: AIAA, 1980: 1886.
[29] COLE J B. Variable camber airfoil: United States Patent 3994451[P]. 1976-11-30.
[30] RENKEN J. Mission-adaptive wing camber control systems for transport aircraft[C]//3rd Applied Aerodynamics Conference. Reston: AIAA, 1985: 5006.
[31] PAVLENKO O P A, PIGUSOV E. Concept of medium twin-engine stol transport airplane: ICAS_0104[R].ICAS,2018.
[32] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5): 36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection WingFull text replacement[J]. Aeronautical Science & Technology, 2020, 31(5): 36-43(in Chinese).
[33] SHMILOVICH A, YADLIN Y, DICKEY E D, et al. Development of an active flow control technique for an airplane high-lift configuration[C]//55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 0322.
[34] KOTA S, HETRICK J A, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies. SPIE, 2003.
[35] VASISTA S, NOLTE F, MONNER H P, et al. Three-dimensional design of a large-displacement morphing wing droop nose device[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(16): 3222-3241.
[36] SCHORSCH O, LVHRING A, NAGEL C. Elastomer-based skin for seamless morphing of adaptive wings[M]//Smart Intelligent Aircraft Structures(SARISTU). Cham: Springer International Publishing, 2015: 187-197.
[37] ANTONIO C I D, MONICA C, ROSARIO P, et al. Morphing wing technologies[M]. Amsterdam Elsevier Ltd, 2018.
[38] GINGER G. AFRL camber morphing wing takes flight[EB/OL].(2020-11-01)[2020-11-02].https://www.compositesworld.com/news/afrl-camber-morphing-wing-takes-flight
[39] Clean Sky’s Morphing Wing project brings shape-shifting capabilities to European regional aircraft[EB/OL].(2020-11-01)[2020-11-02].https://www.cleansky.eu/clean-skys-morphing-wing-project-brings-shape-shifting-capabilities-to-european-regional-aircraft
[40] NASA Flight Tests Advance Research of Flexible, Twistable Wing Flaps for Improved Aerodynamic Efficiency[EB/OL].(2020-11-01)[2020-11-02].https://www.nasa.gov/feature/nasa-flight-tests-advance-research-of-flexible-twistable-wing-flaps-for-improved-aerodynamic.
[41] JAKUBINEK M, ROY S, PALARDY-SIM M, et al. Stretchable structure for a benchtop-scale morphed leading edge demonstration[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
[42] CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of mission adaptive digital composite aerostructure technologies(MADCAT)[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 4273.
[43] 姚艳玲, 黄春峰. 先进变循环发动机技术研究[J]. 航空制造技术, 2012, 55(S2): 106-109. YAO Y L, HUANG C F. Research on advanced variable cycle engine[J]. Aeronautical Manufacturing Technology, 2012, 55(Sup.2): 106-109(in Chinese).
[44] GANGULI R, THAKKAR D, VISWAMURTHY S R. Mathematical modeling[M]//Smart Helicopter Rotors. Cham: Springer International Publishing, 2015: 41-70.
[45] SHAW A D, DAYYANI I, FRISWELL M I. Optimisation of composite corrugated skins for buckling in morphing aircraft[J]. Composite Structures, 2015, 119: 227-237.
[46] MENG X G, SUN M. Aerodynamic effects of corrugation in flapping insect wings in forward flight[J]. Journal of Bionic Engineering, 2011, 8(2): 140-150.
[47] DAYYANI I, SHAW A D, SAAVEDRA FLORES E I, et al. The mechanics of composite corrugated structures: A review with applications in morphing aircraft[J]. Composite Structures, 2015, 133: 358-380.
[48] URSACHE N M, MELIN T, ISIKVEREN A T, et al. Technology integration for active poly-morphing winglets development[C]//Proceedings of ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2009: 775-782.
[49] OLYMPIO K R, GANDHI F. Optimal cellular core topologies for one-dimensional morphing aircraft structures[J]. Journal of Mechanical Design, 2012, 134(8): 081005.
[50] OLYMPIO K R, GANDHI F. Zero poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1737-1753.
[51] OLYMPIO K R, GANDHI F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1719-1735.
[52] CHEN J J, SHEN X, LI J F. Zero Poisson's ratio flexible skin for potential two-dimensional wing morphing[J]. Aerospace Science and Technology, 2015, 45: 228-241.
[53] PERKINS D, REED J, HAVENS E. Morphing wing structures for loitering air vehicles[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: 1888.
[54] BYE D, MCCLURE P. Design of a morphing vehicle[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Str-uctural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1728.
[55] SUN J, LIU Y J, LENG J S. Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(15): 2020-2027.
[56] YIN W L, SUN Q J, ZHANG B, et al. Seamless morphing wing with SMP skin[J]. Advanced Materials Research, 2008, 47-50: 97-100.
[57] KINTSCHER M. Method for the pre-design of a smart droop nose device using a simplex optimization scheme[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2009.
[58] RIEMENSCHNEIDER J, RADESTOCK M, VASISTA S, et al. Droop nose with elastic skin[C]//Proceedings of ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2016.
[59] WANG C, HADDAD KHODAPARAST H, FRISWELL M I, et al. Conceptual-level evaluation of a variable stiffness skin for a morphing wing leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(15): 5703-5716.
[60] THUWIS G A A, ABDALLA M M, GVRDAL Z. Optimization of a variable-stiffness skin for morphing high-lift devices[J]. Smart Materials & Structures, 2010, 19(12): 124010.
[61] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7): 271-278.
[62] KINTSCHER M, GEIER S, MONNER H P, et al. Investigation of multi-material laminates for smart droop nose devices[C]//29th Congress of the International Council of the Aeronautical Sciences, 2014.
[63] CHARY C. Development and validation of a bird strike protection system for an enhanced adaptive droop nose[M]//Smart Intelligent Aircraft Structures(SARISTU). Cham: Springer International Publishing, 2015: 71-83.
[64] MONNER H P, RUDENKO A. On an efficient implementation of non-linear structural optimization for the morphing leading edge of an active blown high lift system[C]//26th International Conference on Adaptive Structures and Technologies, 2015.
[65] BENDSØE M P, SIGMUND O. Topology optimization: Theory, method and applications[M].Berlin: Springer, 2003.
[66] RUDENKO A, MONNER H P, ROSE M. A process chain for structural optimization of a smart droop nose for an active blown high lift system[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: 1414.
[67] LU K J, KOTA S. An effective method of synthesizing compliant adaptive structures using load path representation[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(4): 307-317.
[68] DE GASPARI A, RICCI S. A two-level approach for the optimal design of morphing wings based on compliant structures[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1091-1111.
[69] SANTER M, PELLEGRINO S. Topological optimization of compliant adaptive wing structure[J]. AIAA Journal, 2009, 47(3): 523-534.
[70] 葛文杰, 朱鹏刚, 刘世丽, 等. 基于柔性机构的机翼前缘变形多目标优化[J]. 西北工业大学学报, 2010, 28(2): 211-217. GE W J, ZHU P G, LIU S L, et al. Exploring further multi-objective optimization for shape change of aircraft leading edge using compliant mechanisms[J]. Journal of Northwestern Polytechnical University, 2010, 28(2): 211-217(in Chinese).
[71] 陈秀, 葛文杰, 张永红, 等. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5): 1230-1235. CHEN X, GE W J, ZHANG Y H, et al. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1230-1235(in Chinese).
[72] VASISTA S, DE GASPARI A, RICCI S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 311-330.
[73] 吕帅帅, 王彬文, 杨宇, 等. 基于遗传算法的机翼柔性蒙皮全参数优化设计[J]. 应用力学学报, 2020, 37(2): 617-623, 931. LYU S S, WANG B W, YANG Y, et al. Normal optimization design of flexible skin of airfoil based on genetic algorithm[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 617-623, 931(in Chinese).
[74] 吕帅帅, 王彬文, 杨宇. 三维变弯度机翼前缘柔性蒙皮优化设计[J]. 应用数学和力学, 2020, 41(6): 604-614. LYU S S, WANG B W, YANG Y. Optimal design of flexible skin on the leading edge of a 3D variable-camber wing[J]. Applied Mathematics and Mechanics, 2020, 41(6): 604-614(in Chinese).
[75] SCHMITZ A, HORST P. A new curvature morphing Skin: Manufacturing, experimental and numerical investigations[C]//ECCM16-16th European Conference on Composite Materials, 2014.
[76] FORTIN F. Shape optimization of a stretchable drooping leading edge[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 2352.
[77] JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]//Smart Structures and Materials. Proc SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, 2004, 5388: 213-224.
[78] BONNEMA K, SMITH S. AFTI/F-111 Mission Adaptive Wing flight research program[C]//4th Flight Test Conference. Reston: AIAA, 1988: 2118.
[79] KOTA S, HETRICK J, JR R F. Adaptive structures: Moving into the mainstream[J]. Aerospace America, 2006, 44(9): 16-18.
[80] DECAMP R W, HARDY R. Mission adaptive wing research programme[J]. Aircraft Engineering and Aerospace Technology, 1981, 53(1): 10-11.
[81] PASTOR C, SANDERS B, JOO J J, et al. Kinematically designed flexible skins for morphing aircraft[C]//Proceedings of ASME 2006 International Mechanical Engineering Congress and Exposition. New York: ASME, 2007: 89-95.
[82] KOTA S. Future airplanes will fly on twistable wings[EB/OL].(2020-11-01)[2020-11-02]https://spectrum.ieee.org/aerospace/aviation/future-airplanes-will-fly-on-twistable-wings
[83] KUDVA J N, JARDINE A P, MARTIN C A, et al. Overview of the ARPA/WL "smart structures and materials development-smart wing" contract[C]//1996 Symposium on Smart Structures and Materials. Proc SPIE 2721, Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, 1996, 2721: 10-16.
[84] CAMPANILE L F, SACHAU D. The belt-rib concept: A structronic approach to variable camber[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 215-224.
[85] KUDVA J N, APPA K, VAN WAY C B, et al. Adaptive smart wing design for military aircraft: Requirements, concepts, and payoffs[C]//Smart Structures and Materials ’95. Proc SPIE 2447, Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies, 1995, 2447: 35-44.
[86] BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 279-291.
[87] CAMPANILE L F. Modal synthesis of flexible mechanisms for airfoil shape control[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(7): 779-789.
[88] SINAPIUS M, MONNER H P, KINTSCHER M, et al. DLR’s morphing wing activities within the European network[J]. Procedia IUTAM, 2014, 10: 416-426.
[89] LUO Z, LUO Q T, TONG L Y, et al. Shape morphing of laminated composite structures with photostrictive actuators via topology optimization[J]. Composite Structures, 2011, 93(2): 406-418.
[90] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[91] KIM D, CAPPS R, PHILEN M. Morphing trailing edge control using flexible matrix composite actuators[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012: 1509.
[92] WOODS B K S, FRISWELL M I. Preliminary investigation of a fishbone active camber concept[C]//Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2013: 555-563.
[93] SUN J, GONG X B, LIU Y J, et al. Variable camber wing based on shape memory polymer skin[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
[94] RIVERO A E, WEAVER P M, COOPER J E, et al. Structural modeling of compliance-based camber morphing structures under transverse shear loading[J]. AIAA Journal, 2020, 58(11): 4941-4951.
[95] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 2008-2026.
[96] CHRISTINE F. Inspired by fish by christine fisher|February 2020[EB/OL].(2020-11-01)[2020-11-02]. https://aerospaceamerica.aiaa.org/departments/inspired-by-fish/
[97] MONNER H P. Realization of an optimized wing camber by using formvariable flap structures[J]. Aerospace Science and Technology, 2001, 5(7): 445-455.
[98] BARBARINO S, PECORA R, LECCE L, et al. Airfoil structural morphing based on S.M.A. actuator series: Numerical and experimental studies[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 987-1004.
[99] KARAGIANNIS D, STAMATELOS D, SPATHOPOULOS T, et al. Airfoil morphing based on SMA actuation technology[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(4): 295-306.
[100] ICARDI U, FERRERO L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators[J]. Materials & Design, 2009, 30(10): 4200-4210.
[101] DIODATI G, CONCILIO A, RICCI S, et al. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 8690, Industrial and Commercial Applications of Smart Structures Technologies 2013, 2013, 8690: 123-138.
[102] GIANLUCA D.Actuation system design and test for an adaptive trailing edge morphing device[D].Roma: University of Roma, 2016.
[103] PECORA R. Morphing wing flaps for large civil aircraft: The CleanSky-GRA Challenge[C]//Smart Aircraft, 2019.
[104] HOWELL L L, MIDHA A. A loop-closure theory for the analysis and synthesis of compliant mechanisms[J]. Journal of Mechanical Design, 1996, 118(1): 121-125.
[105] CAMPANILE L F. Initial thoughts on weight penalty effects in shape-adaptable systems[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(1): 47-56.
[106] PEEL L D, MEJIA J, NARVAEZ B, et al. Development of a simple morphing wing using elastomeric composites as skins and actuators[J]. Journal of Mechanical Design, 2009, 131(9): 091003.
[107] REDDY R A, HINGLAJIA D D, MODI A, et al. Morphing airfoil with thermally activated SMA actuators[J]. ISSS Journal of Micro and Smart Systems, 2017, 6(1): 29-45.
[108] KANG W R, KIM E H, JEONG M S, et al. Morphing wing mechanism using an SMA wire actuator[J]. International Journal of Aeronautical and Space Sciences, 2012, 13(1): 58-63.
[109] WILDSCHEK A, JUDAS M, AVERSA N, et al. Multi-functional morphing trailing edge for control of all-composite, all-electric flying wing aircraft[C]//The 26th Congress of ICAS and 8th AIAA ATIO. Reston: AIAA, 2008: 8956.
[110] DIMINO I C M, CONCILIO A, SCHUELLER M, et al. Control system design for a morphing wing trailing edge[J].Recent Patents on Mechanical Engineering,2017,7(2):138-148.
[111] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8): 19-22. ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8): 19-22(in Chinese).
[112] BILGEN O, KOCHERSBERGER K, DIGGS E, et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1785.
[113] BILGEN O, BUTT L, DAY S, et al. A novel unmanned aircraft with solid-state control surfaces: Analysis and flight demonstration[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011: 2071.
[114] MUNDAY D, JACOB J. Active control of separation on a wing with conformal camber[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
[115] PARADIES R, CIRESA P. Active wing design with integrated flight control using piezoelectric macro fiber composites[J]. Smart Materials & Structures, 2009, 18(3): 035010.
[116] VOS R, DE BREUKER R, BARRETT R, et al. Morphing wing flight control via postbuckled precompressed piezoelectric actuators[J]. Journal of Aircraft, 2007, 44(4): 1060-1068.
[117] WICKRAMASINGHE V, CHEN Y, MARTINEZ M, et al. Design and verification of a smart wing for an extremely-agile micro-air-vehicle[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2132.
[118] CRAMER N B, CELLUCCI D W, FORMOSO O B, et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials and Structures, 2019, 28(5): 055006.
[119] MAJJI M, REDINIOTIS O, JUNKINS J. Design of a morphing wing: Modeling and experiments[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2007: 6310.
[120] CHEUNG K C, GERSHENFELD N. Reversibly assembled cellular composite materials[J]. Science, 2013, 341(6151): 1219-1221.
[121] CRAMER N B, SWEI S S M, CHEUNG K, et al. Application of transfer matrix approach to modeling and decentralized control of lattice-based structures[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
[122] SCHAEDLER T A, CARTER W B. Architected cellular materials[J]. Annual Review of Materials Research, 2016, 46: 187-210.
[123] NICK C M C, KENNETH C C, BENJAMIN J, et al.Design and testing of a cellular composite active twist wing[C]//24th AIAA/AHS Adaptive Structures Conference. Reston:AIAA,2016.
[124] JENETT B, CELLUCCI D, GREGG C, et al. Meso-scale digital materials: Modular, reconfigurable, lattice-based structures[C]//Proceedings of ASME 201611th International Manufacturing Science and Engineering Conference.New York:ASME, 2016.
[125] CRAMER N B, SWEI S S M, CHEUNG K, et al. Lattice-based discrete structure modeling and control for large flexible space structure applications[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017.
[126] FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072-1074.
[127] GREGG C E, KIM J H, CHEUNG K C. Ultra-light and scalable composite lattice materials[J]. Advanced Engineering Materials, 2018, 20(9): 1800213.
[128] TABATABAEI M, ATLURI S N. Ultralight cellular composite materials with architected geometrical structure[J]. Composite Structures, 2018, 196: 181-198.
[129] GREGG C E, JENETT B, CHEUNG K C. Assembled, modular hardware architectures-what price reconfigurability?[C]//2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019: 1-10.
[130] CRAMER N B, JENETT B, SWEI SEANS M, et al. Design approximation and proof test methods for a cellular material structure[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 1861.
[131] CRAMER N B, KIM J, GREGG C, et al. Modeling of tunable elastic ultralight aircraft[C]//AIAA Aviation 2019 Forum. Reston: AIAA, 2019: 3159.
[132] AAGE N, ANDREASSEN E, LAZAROV B S, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674): 84-86.
Outlines

/