Review

Micro- and nanoindentation testing techniques: Development and application

  • WANG Zhaoxin ,
  • ZHAO Hongwei
Expand
  • School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China

Received date: 2020-09-29

  Revised date: 2020-10-28

  Online published: 2020-12-14

Supported by

Defense Industrial Technology Development Program (JSJL2018110A001); National Science Fund for Distinguished Young Scholars (51925504)

Abstract

In recent years, micro- and nanoindentation testing techniques, with high precision and high throughput, have been widely used for the research on evolution of mechanical properties and deformation behaviors of materials at micro/nano scales. In the field of aerospace material testing, most researchers are interested in how to better reveal engineering performance and better understand the deformation and damage mechanisms of materials in the service environment. Therefore, the micro- and nanoindentation testing systems, which are close to the real service environment (such as high/low temperature and electric/magnetic field) of the material, have greater application potential. In this review, the conventional micro- and nanoindentation testing methods are summarized firstly, including composition of indentation testing systems, classical analytical theories, and indentation scale/size effects. The analytical models on the contact problem of typical magneto-electro-elastic materials in the multi-field coupling environment are briefly described. Next, some typical applications of indentation testing techniques in the real service environment of materials are highlighted, including high/low temperature nanoindentation testing and nanoindentation testing coupling with electric/magnetic field. Major issues and challenges in current development are also discussed, which are meaningful for further development and advanced use of micro- and nanoindentation testing techniques.

Cite this article

WANG Zhaoxin , ZHAO Hongwei . Micro- and nanoindentation testing techniques: Development and application[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524815 -524815 . DOI: 10.7527/S1000-6893.2020.24815

References

[1] WALLEY S M. Historical origins of indentation hardness testing[J]. Materials Science and Technology, 2012, 28(9-10):1028-1044.
[2] MUKHOPADHYAY N K, PAUFLER P. Micro- and nanoindentation techniques for mechanical characterisation of materials[J]. International Materials Reviews, 2006, 51(4):209-245.
[3] PATHAK S, KALIDINDI S R. Spherical nanoindentation stress-strain curves[J]. Materials Science and Engineering:R:Reports, 2015, 91:1-36.
[4] RAMAMURTY U, JANG J I. Nanoindentation for probing the mechanical behavior of molecular crystals-A review of the technique and how to use it[J]. CrystEngComm, 2014, 16(1):12-23.
[5] KHOSRAVANI A, CECEN A, KALIDINDI S R. Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals:Application to dual-phase steels[J]. Acta Materialia, 2017, 123:55-69.
[6] WEAVER J S, PRIDDY M W, MCDOWELL D L, et al. On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction[J]. Acta Materialia, 2016, 117:23-34.
[7] WANG Z X, WANG S B, ZHOU S L, et al. Micro- and macroscopic plastic flow responses in high Nb-containing TiAl alloy by nanoindentation[J]. Intermetallics, 2020, 127:106958.
[8] RAHIMI R M, BAHR D F. Individual phase deformation and flow correlation to macroscopic constitutive properties of DP1180 steel[J]. Materials Science and Engineering:A, 2019, 756:328-335.
[9] CHENG G, ZHANG F, RUIMI A, et al. Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation[J]. Materials Science and Engineering:A, 2016, 667:240-249.
[10] COOK R F. Fracture sequences during elastic-plastic indentation of brittle materials[J]. Journal of Materials Research, 2019, 34(10):1633-1644.
[11] AST J, GHIDELLI M, DURST K, et al. A review of experimental approaches to fracture toughness evaluation at the micro-scale[J]. Materials & Design, 2019, 173:107762.
[12] PRACH O, MINNERT C, JOHANNS K E, et al. A new nanoindentation creep technique using constant contact pressure[J]. Journal of Materials Research, 2019, 34(14):2492-2500.
[13] KIM J H, CHOI S, LEE J S, et al. An indentation method for evaluation of residual stress:ESTIMATION of stress-free indentation curve using stress-independent indentation parameters[J]. Journal of Materials Research, 2019, 34(7):1103-1111.
[14] GHANBARI S, BAHR D F. An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials[J]. Journal of Materials Research, 2019, 34(7):1121-1129.
[15] PENG G J, LU Z K, MA Y, et al. Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously[J]. Journal of Materials Research, 2018, 33(8):884-897.
[16] TIWARI A, NATARAJAN S. Applied nanoindentation in advanced materials[M]. Chichester:John Wiley & Sons, Ltd, 2017.
[17] HINTSALA E D, HANGEN U, STAUFFER D D. High-throughput nanoindentation for statistical and spatial property determination[J]. The Journal of the Minerals, 2018, 70(4):494-503.
[18] BARNOUSH A, HOSEMANN P, MOLINA-ALDAREGUIA J, et al. In situ small-scale mechanical testing under extreme environments[J]. MRS Bulletin, 2019, 44(6):471-477.
[19] ISO 14577 Metallic materials-instrumented indentation test for hardness and materials parameters[S]. Geneva:ISO,2015.
[20] FISCHER-CRIPPS A C. Nanoindentation instrumentation[M]//Nanoindentation. New York:Springer New York, 2011:199-211.
[21] ZHANG Y F, OH Y, STAUFFER D, et al. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements[J]. Review of Scientific Instruments, 2018, 89(4):045109.
[22] ZHANG Y H, LEBEDEV M, SMITH G, et al. Nano-mechanical properties and pore-scale characterization of different rank coals[J]. Natural Resources Research, 2020, 29(3):1787-1800.
[23] GUILLONNEAU G, MIESZALA M, WEHRS J, et al. Nanomechanical testing at high strain rates:New instrumentation for nanoindentation and microcompression[J]. Materials & Design, 2018, 148:39-48.
[24] HUANG H, ZHAO H W, SHI C L, et al. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope[J]. AIP Advances, 2012, 2(4):042193.
[25] WANG S B, ZHAO H W. Low temperature nanoindentation:Development and applications[J]. Micromachines, 2020, 11(4):407.
[26] DOERNER M F, NIX W D. A method for interpreting the data from depth-sensing indentation instruments[J]. Journal of Materials Research, 1986, 1(4):601-609.
[27] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
[28] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20.
[29] CHENG Y T, CHENG C M. Relationships between hardness, elastic modulus, and the work of indentation[J]. Applied Physics Letters, 1998, 73(5):614-616.
[30] CHENG Y T, CHENG C M. Scaling, dimensional analysis, and indentation measurements[J]. Materials Science and Engineering:R:Reports, 2004, 44(4-5):91-149.
[31] HAY J, CRAWFORD B. Measuring substrate-independent modulus of thin films[J]. Journal of Materials Research, 2011, 26(6):727-738.
[32] SAHA R, NIX W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation[J]. Acta Materialia, 2002, 50(1):23-38.
[33] MENČÍK J, MUNZ D, QUANDT E, et al. Determination of elastic modulus of thin layers using nanoindentation[J]. Journal of Materials Research, 1997, 12(9):2475-2484.
[34] YANG R, ZHANG T H, JIANG P, et al. Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation[J]. Applied Physics Letters, 2008, 92(23):231906.
[35] YANG Y, LIAO N B, ZHANG M, et al. Evaluation of the elastic-plastic properties of SiCN coating system by finite element simulations[J]. Journal of the European Ceramic Society, 2017, 37(13):3891-3897.
[36] GUPTA A K, PORWAL D, DEY A, et al. Evaluation of elasto-plastic properties of ITO film using combined nanoindentation and finite element approach[J]. Ceramics International, 2016, 42(1):1225-1233.
[37] BROITMAN E. Indentation hardness measurements at macro-, micro-, and nanoscale:A critical overview[J]. Tribology Letters, 2016, 65(1):1-18.
[38] GILL S P A, CAMPBELL C J. A model for the indentation size effect in polycrystalline alloys coupling intrinsic and extrinsic length scales[J]. Journal of Materials Research, 2019, 34(10):1645-1653.
[39] WANG X X, ZHAN M, GAO P F, et al. Micromechanical behaviour of TA15 alloy cylindrical parts processed by multi-pass flow forming[J]. Materials Science and Engineering:A, 2018, 737:328-335.
[40] VOYIADJIS G, YAGHOOBI M. Review of nanoindentation size effect:experiments and atomistic simulation[J]. Crystals, 2017, 7(10):321.
[41] ZHANG C, VOYIADJIS G Z. Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal[J]. Materials Science and Engineering:A, 2016, 659:55-62.
[42] NIX W D, GAO H J. Indentation size effects in crystalline materials:A law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3):411-425.
[43] PHARR G M, HERBERT E G, GAO Y F. The indentation size effect:A critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 2010, 40(1):271-292.
[44] LEE S W, MEZA L, GREER J R. Cryogenic nanoindentation size effect in
[001] -oriented face-centered cubic and body-centered cubic single crystals[J]. Applied Physics Letters, 2013, 103(10):101906.
[45] MA Z S, ZHOU Y C, LONG S G, et al. On the intrinsic hardness of a metallic film/substrate system:Indentation size and substrate effects[J]. International Journal of Plasticity, 2012, 34:1-11.
[46] MA Z S, ZHOU Y C, LONG S G, et al. An inverse approach for extracting elastic-plastic properties of thin films from small scale sharp indentation[J]. Journal of Materials Science & Technology, 2012, 28(7):626-635.
[47] VOYIADJIS G Z, FAGHIHI D, ZHANG C. Analytical and experimental determination of rate-and temperature-dependent length scales using nanoindentation experiments[J]. Journal of Nanomechanics and Micromechanics, 2011, 1(1):24-40.
[48] VOYIADJIS G Z, SONG Y. Strain gradient continuum plasticity theories:Theoretical, numerical and experimental investigations[J]. International Journal of Plasticity, 2019, 121:21-75.
[49] ARMSTRONG R W. Size effects on material yield strength/deformation/fracturing properties[J]. Journal of Materials Research, 2019, 34(13):2161-2176.
[50] LI Y, FANG X F, LU S Y, et al. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation[J]. Materials Science and Engineering:A, 2016, 678:65-71.
[51] WANG S B, XU H L, WANG Y Y, et al. Design and testing of a cryogenic indentation apparatus[J]. Review of Scientific Instruments, 2019, 90(1):015117.
[52] LI P D, LIU Y J, ZHANG H, et al. Indentation on a half-infinite one-dimensional hexagonal quasi-crystal space by a rigid flat-ended cylindrical indenter with uniform heat flux or temperature[J]. Mechanics of Materials, 2019, 131:33-46.
[53] ZHANG X, WANG Z J, SHEN H M, et al. Frictional contact involving a multiferroic thin film subjected to surface magnetoelectroelastic effects[J]. International Journal of Mechanical Sciences, 2017, 131-132:633-648.
[54] HU R Z, PRAKASH C, TOMAR V, et al. Experimentally-validated mesoscale modeling of the coupled mechanical-thermal response of AP-HTPB energetic material under dynamic loading[J]. International Journal of Fracture, 2017, 203(1-2):277-298.
[55] ELLOUMI R, EL-BORGI S, GULER M A, et al. The contact problem of a rigid stamp with friction on a functionally graded magneto-electro-elastic half-plane[J]. Acta Mechanica, 2016, 227(4):1123-1156.
[56] ASHIDA F, TAUCHERT T R, NODA N. A general solution technique for piezothermoelasticity of hexagonal solids of class 6 mm in Cartesian coordinates[J]. ZAMM -Journal of Applied Mathematics and Mechanics, 1994, 74(2):87-95.
[57] YANG J, JIN X Y. Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space[J]. Journal of Applied Physics, 2014, 115(8):083516.
[58] CHEN W Q, LEE K Y, DING H J. General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method[J]. International Journal of Engineering Science, 2004, 42(13-14):1361-1379.
[59] ZHU R K, MING W J, LIU Y Y, et al. The intrinsic piezoresponse in piezoelectric medium under contact-mode piezoresponse force microscopy[J]. International Journal of Mechanical Sciences, 2018, 145:400-409.
[60] HAO F, FANG D N. Modeling of magnetoelectric effects in flexural nanobilayers:The effects of surface stress[J]. Journal of Applied Physics, 2013, 113(10):104103.
[61] ELLOUMI R, EL-BORGI S, GULER M A, et al. The contact problem of a rigid stamp with friction on a functionally graded magneto-electro-elastic half-plane[J]. Acta Mechanica, 2016, 227(4):1123-1156.
[62] LEE D C, KIM C W. Two-way nonlinear mechanical-electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475:228678.
[63] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3):77-94. LIU S F, SONG X, XUE T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3):77-94(in Chinese).
[64] BEWLAY B P, NAG S, SUZUKI A, et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016, 33(4-5):549-559.
[65] MAYER S, ERDELY P, FISCHER F D, et al. Intermetallic β-solidifying γ-TiAl based alloys-from fundamental research to application[J]. Advanced Engineering Materials, 2017, 19(4):1600735.
[66] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5):311-390(in Chinese).
[67] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese).
[68] 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10):2747-2755. ZHANG C W, ZHANG B M. Application and key technology of composites tank in space cryogenic propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2747-2755(in Chinese).
[69] 白新德. 材料腐蚀与控制[M]. 北京:清华大学出版社, 2005. BAI X D. Corrosion and control of materials[M]. Beijing:Tsinghua University Press, 2005(in Chinese).
[70] WHEELER J M, ARMSTRONG D E J, HEINZ W, et al. High temperature nanoindentation:The state of the art and future challenges[J]. Current Opinion in Solid State and Materials Science, 2015, 19(6):354-366.
[71] MINNERT C, OLIVER W C, DURST K. New ultra-high temperature nanoindentation system for operating at up to 1100℃[J]. Materials & Design, 2020, 192:108727.
[72] CONTE M, MOHANTY G, SCHWIEDRZIK J J, et al. Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800℃[J]. The Review of Scientific Instruments, 2019, 90(4):045105.
[73] QU Z L, YU M, LIU Y C, et al. An elevated-temperature depth-sensing instrumented indentation apparatus for investigating thermo-mechanical behaviour of thermal barrier coatings[J]. The Review of Scientific Instruments, 2017, 88(4):045102.
[74] KANG W, MERRILL M, WHEELER J M. In situ thermomechanical testing methods for micro/nano-scale materials[J]. Nanoscale, 2017, 9(8):2666-2688.
[75] WHEELER J M, MICHLER J. Elevated temperature, nano-mechanical testingin situin the scanning electron microscope[J]. Review of Scientific Instruments, 2013, 84(4):045103.
[76] CHAVOSHI S Z, XU S Z. Temperature-dependent nanoindentation response of materials[J]. MRS Communications, 2018, 8(1):15-28.
[77] WANG H, DHIMAN A, OSTERGAARD H E, et al. Nanoindentation based properties of Inconel 718 at elevated temperatures:A comparison of conventional versus additively manufactured samples[J]. International Journal of Plasticity, 2019, 120:380-394.
[78] KOLB M, WHEELER J M, MATHUR H N, et al. Local mechanical properties of the (β0+ω0) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures[J]. Materials Science and Engineering:A, 2016, 665:135-140.
[79] SALARI S, RAHMAN M S, POLYCARPOU A A, et al. Elevated temperature mechanical properties of Inconel 617 surface oxide using nanoindentation[J]. Materials Science and Engineering:A, 2020, 788:139539.
[80] SINGH P S, LIANG Z Y, PHARR G M, et al. Creep of a thermally stable nanocrystalline nickel tungsten alloy as measured by high temperature nanoindentation[J]. Materials Science and Engineering:A, 2020, 784:139309.
[81] FANG X F, LI Y, YUE M K, et al. Chemo-mechanical coupling effect on high temperature oxidation:A review[J]. Science China Technological Sciences, 2019, 62(8):1297-1321.
[82] LI Y, FANG X F, ZHANG S Y, et al. Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation[J]. Corrosion Science, 2018, 135:192-196.
[83] FENG G, NGAN A H W. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation[J]. Journal of Materials Research, 2002, 17(3):660-668.
[84] LEE H, CHEN Y, CLAISSE A, et al. Finite element simulation of hot nanoindentation in vacuum[J]. Experimental Mechanics, 2013, 53(7):1201-1211.
[85] HOU X D, ALVAREZ C L M, JENNETT N M. Establishing isothermal contact at a known temperature under thermal equilibrium in elevated temperature instrumented indentation testing[J]. Measurement Science and Technology, 2017, 28(2):025016.
[86] BRONS J G, PADILLA H A II, THOMPSON G B II, et al. Cryogenic indentation-induced grain growth in nanotwinned copper[J]. Scripta Materialia, 2013, 68(10):781-784.
[87] HUSTON L Q, KIRAN M S R N, SMILLIE L A, et al. Cold nanoindentation of germanium[J]. Applied Physics Letters, 2017, 111(2):021901.
[88] WANG S B, LIU H, XU L X, et al. Investigations of phase transformation in monocrystalline silicon at low temperatures via nanoindentation[J]. Scientific Reports, 2017, 7:8682.
[89] 谢迪, 韦红余, 何敏, 等. 用于吸波材料的铁磁性/碳材料复合物[J]. 材料导报, 2017, 31(增刊2):125-128, 149. XIE D, WEI H Y, HE M, et al. Ferromagnetic carbon-based composites for wave absorbing materials[J]. Materials Review, 2017, 31(Sup 2):125-128, 149(in Chinese).
[90] LIU C Y, ZHAO H W, MA Z C, et al. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions[J]. The Review of Scientific Instruments, 2018, 89(2):025112.
[91] NILI H, KALANTAR-ZADEH K, BHASKARAN M, et al. In situ nanoindentation:Probing nanoscale multifunctionality[J]. Progress in Materials Science, 2013, 58(1):1-29.
[92] FANG L, MUHLSTEIN C L, COLLINS J G, et al. Continuous electrical in situ contact area measurement during instrumented indentation[J]. Journal of Materials Research, 2008, 23(9):2480-2485.
[93] COMBY-DASSONNEVILLE S, VOLPI F, PARRY G, et al. Resistive-nanoindentation:Contact area monitoring by real-time electrical contact resistance measurement[J]. MRS Communications, 2019, 9(3):1008-1014.
[94] PHARR G M, OLIVER W C, COOK R F, et al. Electrical resistance of metallic contacts on silicon and germanium during indentation[J]. Journal of Materials Research, 1992, 7(4):961-972.
[95] NOWAK R, CHROBAK D, NAGAO S, et al. An electric current spike linked to nanoscale plasticity[J]. Nature Nanotechnology, 2009, 4(5):287-291.
[96] NGUYEN H H, WEI P J, LIN J F. Electric contact resistance for monitoring nanoindentation-induced delamination[J]. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2011, 2(1):015007(4pp).
[97] ZHOU H, PEI Y M, LI F X, et al. Electric-field-tunable mechanical properties of relaxor ferroelectric single crystal measured by nanoindentation[J]. Applied Physics Letters, 2014, 104(6):061904.
[98] 裴永茂, 徐浩, 于泽军, 等. 磁电复合材料的力学实验与理论研究进展[J]. 固体力学学报, 2016, 37(3):193-207. PEI Y M, XU H, YU Z J, et al. Research progress in mechanical experiments and theory of magnetoelectric composite materials[J]. Chinese Journal of Solid Mechanics, 2016, 37(3):193-207(in Chinese).
[99] FANG D N, ZHANG H L, XU H, et al. Deformation and fracture of electromagnetic thin films and laminates under multi-field loading[J]. Procedia IUTAM, 2017, 20:2-9.
[100] ZHOU H, PEI Y M, FANG D N. Magnetic field tunable small-scale mechanical properties of nickel single crystals measured by nanoindentation technique[J]. Scientific Reports, 2014, 4:4583.
[101] ZHOU H, PEI Y M, HUANG H, et al. Multi-field nanoindentation apparatus for measuring local mechanical properties of materials in external magnetic and electric fields[J]. The Review of Scientific Instruments, 2013, 84(6):063906.
[102] ZHOU H, ZHANG H L, PEI Y M, et al. Scaling relationship among indentation properties of electromagnetic materials at micro- and nanoscale[J]. Applied Physics Letters, 2015, 106(8):081904.
[103] ZIMMERMAN G O. Experimental techniques for low-temperature measurements:cryostat design, material properties, and superconductor critical-current testing[J]. Physics Today, 2007, 60(5):67.
[104] HUANG H, ZHAO H W. In Situ nanoindentation and scratch testing inside scanning electron microscopes:opportunities and challenges[J]. Science of Advanced Materials, 2014, 6(5):875-889.
[105] TRENKLE J C, PACKARD C E, SCHUH C A. Hot nanoindentation in inert environments[J]. The Review of Scientific Instruments, 2010, 81(7):073901.
[106] HSUEH C H, SCHMAUDER S, CHEN C S, et al. Handbook of mechanics of materials[M]. Berlin:Springer, 2019.
[107] KORTE S, STEARN R J, WHEELER J M, et al. High temperature microcompression and nanoindentation in vacuum[J]. Journal of Materials Research, 2012, 27(1):167-176.
[108] WHEELER J M, MICHLER J. Indenter materials for high temperature nanoindentation[J]. Review of Scientific Instruments, 2013, 84(10):101301.
[109] QU Z L, PEI Y M, HE R J, et al. Investigation of pile-up behavior for thermal barrier coatings under elevated-temperature indentation[J]. Journal of Applied Mechanics, 2016, 83(4):041009.
Outlines

/