Fluid Mechanics and Flight Mechanics

Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6

  • SUN Dong ,
  • LIU Pengxin ,
  • SHEN Pengfei ,
  • TONG Fulin ,
  • GUO Qilong
Expand
  • State Key Laboratory of Aerodynamics, Mianyang 621000, China

Received date: 2020-08-31

  Revised date: 2020-09-25

  Online published: 2020-10-30

Supported by

National Key Research and Development Program of China (2019YFA0405300); National Natural Science Foundation of China (11802324); National Numerical Windtunnel Project

Abstract

The compressibility effect in the hypersonic shock wave/boundary layer interaction is much stronger than that in the supersonic interaction, and after the reattachment, the high local pressure and thermal load will form, thereby significantly influencing the flight safety of vehicles. The three-dimensionality of the shock wave/boundary layer interaction further complicates the flow structures, making them more difficult to predict. In this study, a direct numerical simulation on the hypersonic shock wave/boundary layer interaction is performed. The effects of G rtler vortices on the separation bubble, the wall pressure and the heat flux are investigated both qualitatively and quantitatively. The investigation results indicate that the separation bubble exhibits obvious three-dimensionality and the size of the bubble at the spanwise separation location is significantly smaller than that at the spanwise reattachment location. The bubbles at the two locations change synchronously. The pressure and the heat flux exhibit inhomogeneous distribution in the spanwise direction. The mean pressure and the heat flux at the spanwise reattachment location are 13% and 16.2% higher than those at the spanwise separation locations, respectively. The ratios for the fluctuations of pressure and heat flux are 28% and 20% higher, respectively. The proper orthogonal decomposition analyses indicate that the energy concentrates on the shear layer above the bubble and the low-order modes at the spanwise reattachment occupy more energy than those at the separation location.

Cite this article

SUN Dong , LIU Pengxin , SHEN Pengfei , TONG Fulin , GUO Qilong . Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(12) : 124681 -124681 . DOI: 10.7527/S1000-6893.2020.24681

References

[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research-What next?[J]. AIAA Journal, 2001, 39:1517-1531.
[2] ANDREOPOULOS J, MUCK K. Some new aspects of the shock wave boundary layer interaction in compression ramp flows[C]//24th Aerospace Sciences Meeting. Reston:AIAA, 1986.
[3] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock-wave/boundary layer interactions:AIAA-1993-3134[R]. Reston:AIAA, 1993.
[4] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12):2412-2422.
[5] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.
[6] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.
[7] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49.
[8] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23(2):79-107.
[9] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28.
[10] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005.
[11] TONG F L, LI X L, YUAN X X, et al. Incident shock wave and supersonic turbulent boundarylayer interactions near an expansion corner[J]. Computers & Fluids, 2020, 198:104385.
[12] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12):124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124054(in Chinese).
[13] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. LES of shock wave/turbulent boundary layer interaction[C]//High Performance Computing in Science and Engineering' 05, 2006.
[14] ZHELTOVODOV A. Some advances in research of shock wave turbulent boundary layer interactions[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[15] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42:79-93.
[16] TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29(12):125101.
[17] HELM C M, MARTIN P M. Görtler-like vortices in the LES data of a Mach 7 STBLI:AIAA-2017-0762[R]. Reston:AIAA, 2017.
[18] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese).
[19] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9):1651-1658.
[20] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588.
[21] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers & Fluids, 2017, 149:56-69.
[22] LI X L, LENG Y, HE Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 73(6):560-577.
[23] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613:205-231.
[24] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.
[25] ELENA M, LACHARME J. Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer[J]. Journal de Mecanique Theorique et Appliquee, 1988, 7:175-190.
[26] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267.
[27] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2011.
[28] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[29] SMITS A J, DUSSAUGE J P. Turbulent shear layers in supersonic flow[M]. New York:Springer-Verlag, 2006.
[30] SIMPSON R L. Turbulent boundary-layer separation[J]. Annual Review of Fluid Mechanics, 1989, 21(1):205-232.
[31] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-571.
Outlines

/