Review

Development of aircraft structural fatigue and structural integrity: Review

  • CUI Degang ,
  • BAO Rui ,
  • ZHANG Rui ,
  • LIU Binchao ,
  • OUYANG Tian
Expand
  • 1. Science and Technology Committee, Aviation Industry Corporation of China, Beijing 100010, China;
    2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    3. Technical Research Department 1, Chinese Aeronautical Establishment, Beijing 100012, China

Received date: 2020-06-11

  Revised date: 2020-08-07

  Online published: 2020-10-16

Abstract

As the main factor affecting the safety of structures, the structural design and strength analysis of aircraft has developed from static strength design to safety-life design and damage-tolerance design, and further to the durability concept and aircraft structural integrity, during which the design and technique philosophies keep improving and undergo qualitative changes. However, the present understanding towards structural integrity in engineering practice is limited to the level of product development and testing, hindering its significance at a further level. This paper first introduces the development of aircraft structural design from static strength design to structural integrity design, the basic concept of aircraft structural integrity, and the main contents and key points of Aircraft Structural Integrity Program (ASIP). Moreover, the promotional transition from the traditional specification for analysis and testing within the design phase to the present one for process control and management within the whole product lifecycle is addressed by elucidating the "Five Tasks". Finally, two typical successful ASIP applications involving the design, verification and maintenance of aircraft structural integrity are presented as examples. Through the basic concepts and development of the main design philosophies, this paper shows the qualitative change of aircraft structural safety strategies from limited application within the design and development phase to thorough application for process control within the full lifecycle, and points out the trend that structural integrity philosophies are developing from experiment-based systematic approaches to digital ones.

Cite this article

CUI Degang , BAO Rui , ZHANG Rui , LIU Binchao , OUYANG Tian . Development of aircraft structural fatigue and structural integrity: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(5) : 524394 -524394 . DOI: 10.7527/S1000-6893.2020.24394

References

[1] 中国飞行试验研究院. 美国国防部联合使用规范指南:飞机结构:JSSG-2006[S]. 西安:中国飞行试验研究院,2003. China Flight Test and Research Institute. Department of defense joint service specification guide:Aircraft structure:JSSG-2006[S]. Xi'an:China Flight Test and Research Institute, 2003(in Chinese).
[2] Department of Defense Standard Practice. Aircraft Structural Integrity Program (ASIP):MIL-HDBK-1530B[S]. Wright-Patterson AFB:The Air Force Research Laboratory, 2002.
[3] 国防科工委. 军用飞机强度和刚度规范:GJB 67.1~13-85[S]. 北京:国防科工委, 1985. National Defense Science and Engineering Commission. Specification for strength and stiffness of military aircraft:GJB 67.1~13-85[S]. Beijing:National Defense Science and Engineering Commission,1985(in Chinese).
[4] 中国人民解放军总装备部. 军用飞机结构完整性大纲:GJB 775.1-1989[S]. 北京:中国人民解放军总装备部, 1989. General Equipment Department of People's Liberation Army of China. Military aircraft structural integrity program:GJB 775.1-1989[S]. Beijing:General Equipment Department of People's Liberation Army of China, 1989(in Chinese).
[5] 中国人民解放军总装备部. 军用飞机结构完整性大纲:GJB 775A-2012[S]. 北京:中国人民解放军总装备部, 2012. General Equipment Department of People's Liberation Army of China. Military aircraft structural integrity program:GJB 775A-2012[S]. Beijing:General Equipment Department of People's Liberation Army of China, 2012(in Chinese).
[6] GRIMSLEY F. B-2 structural integrity program:AIAA-1995-1466[R]. Reston:AIAA, 1995.
[7] SURESH S. Fatigue of materials[M]. Cambridge:Cambridge University Press, 1998:8-11.
[8] SWIFT T. Fail-safe design requirements and features, regulatory requirements:AIAA-2003-2783[R]. Reston:AIAA, 2013.
[9] Federal Aviation Administration. Fatigue evaluation of structures:AMDT.No.25-96[R]. Washington, D.C.:Federal Aviation Administration, 1998.
[10] Federal Aviation Administration. Advisory circular-damage tolerance and fatigue evaluation of structure:AC No.25.571-1C[R]. Washington, D.C.:Federal Aviation Administration, 1998.
[11] Federal Aviation Administration. Aging aircraft program:Widespread fatigue damage, 14 CFR parts 25, 121, and 129:No.FAA-2006-24821[R]. Washington, D.C.:Federal Aviation Administration, 2006.
[12] Federal Aviation Administration. Advisory circular-widespread fatigue damage on metallic structure:AC No.120-YY (Draft)[R]. Washington, D.C.:Federal Aviation Administration, 2006.
[13] Federal Aviation Administration. Advisory circular-damage tolerance and fatigue evaluation of structure:AC No.25.571-1X[R]. Washington, D.C.:Federal Aviation Administration, 2006.
[14] Federal Aviation Administration. Aging aircraft program:Widespread fatigue damage, final rule:Docket No. FAA-2006-24281[R]. Washington, D.C.:Federal Aviation Administration, 2010.
[15] Federal Aviation Administration. Aging circular:Establishing and implementing limit of validity to prevent widespread fatigue damage:AC No.120-104[R]. Washington, D.C.:Federal Aviation Administration, 2011.
[16] Federal Aviation Administration. Advisory circular-damage tolerance and fatigue evaluation of structure:AC No.25.571-1D[R]. Washington, D.C.:Federal Aviation Administration, 2011.
[17] 李亚智, 李强, 沈培良. 运输类飞机防止广布疲劳损伤的适航要求[J]. 航空工程进展, 2011, 2(4):11-20. LI Y Z, LI Q, SHEN P L. An overview of airworthiness requirements for transport category airplanes to prevent widespread fatigue damage[J]. Advances in Aeronautical Science and Engineering, 2011, 2(4):11-20(in Chinese).
[18] 王生楠, 郑晓玲. 运输类飞机防止广布疲劳损伤的新规章解读[J]. 航空学报, 2010, 31(9):1758-1768. WANG S N, ZHENG X L. Study on proposed rules to preclude widespread fatigue damage for transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1758-1768(in Chinese).
[19] 梁小林,许希武,林智育.复合材料层板低速冲击后疲劳性能实验研究[J].材料工程, 2016, 44(12):100-106. LIANG X L, XU X W, LIN Z Y. Fatigue performance of composite laminates after low-velocity impact[J]. Journal of Materials Engineering, 2016,44(12):100-106(in Chinese).
[20] Federal Aviation Administration. Advisory circular composite aircraft structure:AC20-107B[R]. Washington, D.C.:Federal Aviation Administration, 1998.
[21] ALBERT W A J. Vber treibseile am harz[M]//Archive für Mineralogie:Geognosie, Bergbau und Hüttenkunde, 1838:215-234.
[22] WÖHLER A. Versuche liber die Festigkeit der Eisenbahnwagenachsen[J]. Zeitschrift für Bauwesen, 1860, 10(4):160-161.
[23] BASQUIN O H. The exponential law of endurance tests[C]//Proceedings of the American Society for Testing and Materials, 1910:625-630.
[24] GOODMAN J. Mechanics applied to engineering[M]. London:Longmans Green, 1899.
[25] SMITH K N, WATSON P, TOPPER T H. Stress-strain function for the fatigue of materials[J]. Journal of Materials, 1970, 5:767-778.
[26] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[M]//Effects of Environment and Complex Load History on Fatigue Life. West Conshohocken:ASTM International, 1970:1-14.
[27] SENDECKYJ G P. Constant life diagrams-A historical review[J]. International Journal of Fatigue, 2001, 23(4):347-353.
[28] DOWLING N E, CALHOUN C A, ARCARI A, et al. Mean stress effects in stress-life fatigue and the Walker equation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(3):163-179.
[29] MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12:159-164.
[30] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003. YAO W X. Fatigue life prediction of structures[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[31] SHANLEY F R. A proposed mechanism of fatigue failure[M]//Colloquium on Fatigue. Berlin:Springer, 1956:251-259.
[32] GROVER H J. Fatigue of aircraft structures[R]. Washington, D.C.:U.S. Government Printing Office, 1966.
[33] FATEMI A, YANG L. Cumulative fatigue damage and life prediction theories:A survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue, 1998, 20(1):9-34.
[34] SCHIJVE J. Some remarks on the cumulative damage concept[C]//Minutes 4th ICAF Conference, 1956.
[35] HAIGH B P. Experiments on the fatigue of brasses[J]. Journal of the Institute of Metals, 1917, 18:55-77.
[36] GOUGH H J. Crystalline structure in relation to failure of metals, especially by fatigue[C]//Proceedings of the American Society for Testing and Materials, 1933:3-114.
[37] NEUBER H. Theory of notch stresses:Principle for exact stress calculations[M]. Ann Arbor:Edwards, 1946.
[38] LANGER B F. Fatigue failure from stress cycles of varying amplitude[J]. Journal of Applied Mechanics, 1937:59:160-162.
[39] WEIBULL W. A statistical theory of the strength of materials[C]//Proceedings of Royal Swedish Academy of Engineering Sciences, 1939.
[40] BACH C. Die maschinen-elemente[M]. Leipzig:Alfred Kröner Verlag, 1913.
[41] SMITH J H. Some experiments on the fatigue of metals[J]. Journal of Iron and Steel Institute, 1910, 91:365-397.
[42] HAIGH B P. Report on alternating stress tests of a sample of mild steel received from the British Association Stress Committee[R]. 1915.
[43] MOORE H F, SEELEY F B. The failure of metals under repeated stress[C]//Proceedings of the American Society for Testing and Materials, 1915:437-466.
[44] SMITH J H, WEDGWOOD G A. Stress-strain loops for steel in the cyclic state[J]. Journal of Iron and Steel Institute, 1915, 82:246-318.
[45] GOUGH H J, HANSON D. The behaviour of metals subjected to repeated stresses[C]//Proceedings of the Royal Society, 1923:535-565.
[46] JENKIN C F. The fatigue failure of metals[C]//Proceedings of the Royal Society, 1923:121-138.
[47] MASING G. Eigenspannungen und verfestigung beim messing[C]//Proceedings of the Second International Conference of Applied Mechanics, 1926:332-335.
[48] SODERBERG C R. Factor of safety and working stress[J]. Transactions of the American Society of Mechanical Engineers, 1939, 52:13-28.
[49] IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957, 24:361-364.
[50] PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85:528-534.
[51] ELBER W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1):37-45.
[52] ELBER W. The significance of fatigue crack closure[C]//Damage Tolerance in Aircraft Structures Annual Meeting, 1971:230-242.
[53] KITAGAWA H, TAKAHASHI S. Applicability of fracture mechanics to very small cracks or the cracks in the early stage[C]//Proceedings of Second International Conference on Mechanical Behavior of Materials, 1976:627-631.
[54] IRWIN G R. Fracture[M]//Encylopedia of Physics, Vol. VI-Elasticity and Plasticity. Berlin:Springer, 1958:551-590.
[55] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of Mechanics and Physics of Solids, 1960, 8(2):100-104.
[56] RICE J R, ROSENGREN G F. Plane strain deformation near a crack tip in a power law hardening materials[J]. Journal of Mechanics and Physics of Solids, 1968, 16(1):1-12.
[57] HUTCHINSON J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of Mechanics and Physics of Solids, 1968, 16(1):13-31.
[58] WELLS A A. Unstable crack propagation in metals:cleavage and fast fracture[C]//Proceedings of the Crack Propagation Symposium, 1961:210-230.
[59] RICE J R. A path independent integral and the approximate analysis of strain concentrations[J]. Journal of Applied Mechanics, 1968, 35(2):379-386.
[60] VASCO-OLMOA J M, DÍAZ F A, ANTUNES F V, et al. Characterization of fatigue crack growth using digital image correlation measurements of plastic CTOD[J]. Theoretical and Applied Fracture Mechanics, 2019, 101:332-341.
[61] HOSSEINI Z S, DADFARNIA M, SOMERDAY B P, et al. On the theoretical modeling of fatigue crack growth[J]. Journal of the Mechanics and Physics of Solids, 2018, 121:341-362.
[62] FORSYTH P J E, RYDER D A. Some results of the examination of aluminum alloy specimen fracture surfaces[J]. Metallurgia, 1961, 63:17-124.
[63] PHILLIPS D C, SCOTT J M. The shear fatigue of unidirectional fiber composites[J]. Composites, 1977, 8(4):233-236.
[64] ROTEM A. Fatigue behavior of multidirectional laminate[J]. AIAA Journal, 1979, 17(3):271-277.
[65] DEMUTS E, SHYPRYKEVICH P. Accelerated environmental testing of composites[J]. Composites, 1984, 15(1):25-31.
[66] AGARWAL B D, JONEJA S K. Flexural fatigue properties of unidirectional GRP in the transverse direction[J]. Composites, 1979, 10(1):28-30.
[67] SUN C T, CHIM E S. Fatigue retardation due to creep in a fibrous composite[C]//Symposium on Fatigue of Fibrous Composite Materials, 1981:233-242.
[68] SENDECKYJ G P. Life prediction for resin-matrix composite materials[J]. Composite Materials Series, 1991, 4:431-483.
[69] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4):448-464.
[70] WHITWORTH H A. Evaluation of the residual strength degradation in composite laminates under fatigue loading[J]. Composite Structures, 2000, 48:261-264.
[71] YANG J N, YANG S H, JONES D L. A stiffness-based statistical model for predicting the fatigue life of graphite/epoxy laminates[J]. Composites Technology and Research, 1989, 11:129-134.
[72] 郑晓玲. 民机结构耐久性与损伤容限设计手册(上册):疲劳设计与分析[M]. 北京:航空工业出版社, 2003:1-15. ZHENG X L. Design manual for durability and damage tolerance of civil aircraft structure (Volume I):Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003:1-15(in Chinese).
[73] 郑楚鸿.高周疲劳设计方法——应力场强法的研究[D]. 北京:清华大学, 1984. ZHENG C H. Research on high cycle fatigue design method-Stress field strength method[D]. Beijing:Tsinghua University,1984.
[74] TAYLOR D. The theory of critical distances-A new perspective in fracture mechanics[M]. Amsterdam:Elsevier, 2006.
[75] 刘文珽. 军用飞机结构疲劳设计细节疲劳额定值方法指南[M]. 北京:国防工业出版社, 2012. LIU W T. Military aircraft structural fatigue design details fatigue rating methodological guide[M]. Beijing:National Defense Industry Press, 2012(in Chinese).
[76] 刘文珽. 结构可靠性设计手册[M]. 北京:国防工业出版社, 2008. LIU W T. Structural reliability design manual[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[77] 张福泽.飞机日历寿命确定的新方法研究[M]. 北京:气象出版社, 2000. ZHANG F Z. A new method for determining the calendar life of aircraft[M]. Beijing:China Meteorological Press, 2000(in Chinese).
[78] 石荣, 李郑琦, 王学德, 等. 飞机结构日历寿命研究现状及关键问题[J]. 中国腐蚀与防护学报, 2008, 28(6):381-386. SHI R, LI Z Q, WANG X D, et al. Current status and development of calendar life of aircraft structure[J]. Journal of Chinese Society for Corrosion and Protection, 2008, 28(6):381-386(in Chinese).
[79] 杨晓华,姚卫星,陈跃良. 考虑日历环境影响的结构日历寿命研究[J]. 应用力学学报,2002,19(3):157-159. YANG X H, YAO W X, CHEN Y L. Research calendar life of aircraft structure considering the effects of calendar environment[J]. Chinese Journal of Applied Mechanics, 2002, 19(3):157-159(in Chinese).
[80] 董登科,王俊扬. 关于军用飞机服役日历年限评定用的当量环境谱[J]. 航空学报,1998,19(4):451-455. DONG D K, WANG J Y. Equivalent environment spectrum research on service calendar time for fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):451-455(in Chinese).
[81] 刘文珽,李玉海.飞机结构日历寿命体系评定技术[M]. 北京:航空工业出版社,2004. LIU W T, LI Y H. Evaluation technology of calendar life system for aircraft structure[M]. Beijing:Aviation Industry Press, 2004(in Chinese).
[82] 陈群志,李喜明,周希沅,等. 飞机结构典型环境腐蚀当量关系研究[J]. 航空学报,1998,19(4):414-418. CHEN Q Z, LI X M, ZHOU X Y, et al. Study on equivalent relationship of typical corrosion environment of aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):414-418(in Chinese).
[83] 陈群志, 刘文珽, 陈志伟, 等. 腐蚀环境下飞机结构日历寿命研究现状与关键技术问题[J]. 中国安全科学学报, 2000, 10(3):42-47. CHEN Q Z,LIU W T,CHEN Z W, et al. Current status and key techniques of calendar life of aircraft structure under corrosive environment[J]. China Safety Science Journal, 2000, 10(3):42-47(in Chinese).
[84] SODEN P D, KADDOUR A S, HINTON M J. Recommendations for designers and researchers resulting from the world-wide failure exercise[J]. Composites Science and Technology, 2004, 64:589-604.
[85] 孙侠生. 民用飞机结构强度刚度设计与验证指南(第三册)[M]. 北京:航空工业出版社, 2012. SUN X S. Guide for strength and stiffness design and verification of civil aircraft structures:Volume 3[M]. Beijing:Aviation Industry Press, 2012(in Chinese).
[86] 郦正能, 张纪奎. 飞机结构疲劳和损伤容限设计[M]. 北京:北京航空航天大学出版社, 2016. LI Z N, ZHANG J K. Fatigue and damage tolerance design for aircraft structures[M]. Beijing:Beihang University Press, 2016(in Chinese).
[87] ELLIS R M, GROSS P C, YATES J B, et al. F-35 structural design, development, and verification[M]//The F-35 Lightning II:From Concept to Cockpit. Bethesda:Lockheed Martin Corporation, 2019:253-285.
[88] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US Air Force vehicles:AIAA-2012-1818[R]. Reston:AIAA, 2012.
[89] NASA. Fracture control requirements for spaceflight hardware:NASA-STD-5019[R]. Washington, D.C.:NASA, 2008.
[90] NASA. Fracture control implementation handbook for payloads, experiments, and similar hardware:NASA-STD-5010[R]. Washington, D.C.:NASA, 2005.
[91] SHAFTO M, CONROY M, DOYLE R. et al. Modeling, simulation, information technology and processing roadmap:Technology area 11[R]. Washington, D.C.:NASA, 2010.
[92] PIASCIK R, VICKERS J, LOWRY D, et al. Materials, structures, mechanical systems, and manufacturing roadmap:Technology area 12[R]. Washington, D.C.:NASA, 2010.
[93] KOBRYN P A, TUEGEL E J. Condition-based maintenance plus structural integrity (CBM+SI) & the airframe digital twin:88ABW-201101428[R]. Wright-Patterson AFB:The Air Force Research Laboratory, 2011.
[94] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011:154798.
[95] National Science Foundation (NSF). Simulation-based engineering science:Revolutionizing engineering science through simulation[R]. Arlington:National Science Foundation, 2006.
[96] ALLISON J, COMPANY F M. Integrated computational materials engineering:A transformational discipline for improved competitiveness and national security[M]. Washington, D.C.:The National Academies Press, 2010.
Outlines

/