[1] 中国飞行试验研究院. 美国国防部联合使用规范指南:飞机结构:JSSG-2006[S]. 西安:中国飞行试验研究院,2003. China Flight Test and Research Institute. Department of defense joint service specification guide:Aircraft structure:JSSG-2006[S]. Xi'an:China Flight Test and Research Institute, 2003(in Chinese).
[2] Department of Defense Standard Practice. Aircraft Structural Integrity Program (ASIP):MIL-HDBK-1530B[S]. Wright-Patterson AFB:The Air Force Research Laboratory, 2002.
[3] 国防科工委. 军用飞机强度和刚度规范:GJB 67.1~13-85[S]. 北京:国防科工委, 1985. National Defense Science and Engineering Commission. Specification for strength and stiffness of military aircraft:GJB 67.1~13-85[S]. Beijing:National Defense Science and Engineering Commission,1985(in Chinese).
[4] 中国人民解放军总装备部. 军用飞机结构完整性大纲:GJB 775.1-1989[S]. 北京:中国人民解放军总装备部, 1989. General Equipment Department of People's Liberation Army of China. Military aircraft structural integrity program:GJB 775.1-1989[S]. Beijing:General Equipment Department of People's Liberation Army of China, 1989(in Chinese).
[5] 中国人民解放军总装备部. 军用飞机结构完整性大纲:GJB 775A-2012[S]. 北京:中国人民解放军总装备部, 2012. General Equipment Department of People's Liberation Army of China. Military aircraft structural integrity program:GJB 775A-2012[S]. Beijing:General Equipment Department of People's Liberation Army of China, 2012(in Chinese).
[6] GRIMSLEY F. B-2 structural integrity program:AIAA-1995-1466[R]. Reston:AIAA, 1995.
[7] SURESH S. Fatigue of materials[M]. Cambridge:Cambridge University Press, 1998:8-11.
[8] SWIFT T. Fail-safe design requirements and features, regulatory requirements:AIAA-2003-2783[R]. Reston:AIAA, 2013.
[9] Federal Aviation Administration. Fatigue evaluation of structures:AMDT.No.25-96[R]. Washington, D.C.:Federal Aviation Administration, 1998.
[10] Federal Aviation Administration. Advisory circular-damage tolerance and fatigue evaluation of structure:AC No.25.571-1C[R]. Washington, D.C.:Federal Aviation Administration, 1998.
[11] Federal Aviation Administration. Aging aircraft program:Widespread fatigue damage, 14 CFR parts 25, 121, and 129:No.FAA-2006-24821[R]. Washington, D.C.:Federal Aviation Administration, 2006.
[12] Federal Aviation Administration. Advisory circular-widespread fatigue damage on metallic structure:AC No.120-YY (Draft)[R]. Washington, D.C.:Federal Aviation Administration, 2006.
[13] Federal Aviation Administration. Advisory circular-damage tolerance and fatigue evaluation of structure:AC No.25.571-1X[R]. Washington, D.C.:Federal Aviation Administration, 2006.
[14] Federal Aviation Administration. Aging aircraft program:Widespread fatigue damage, final rule:Docket No. FAA-2006-24281[R]. Washington, D.C.:Federal Aviation Administration, 2010.
[15] Federal Aviation Administration. Aging circular:Establishing and implementing limit of validity to prevent widespread fatigue damage:AC No.120-104[R]. Washington, D.C.:Federal Aviation Administration, 2011.
[16] Federal Aviation Administration. Advisory circular-damage tolerance and fatigue evaluation of structure:AC No.25.571-1D[R]. Washington, D.C.:Federal Aviation Administration, 2011.
[17] 李亚智, 李强, 沈培良. 运输类飞机防止广布疲劳损伤的适航要求[J]. 航空工程进展, 2011, 2(4):11-20. LI Y Z, LI Q, SHEN P L. An overview of airworthiness requirements for transport category airplanes to prevent widespread fatigue damage[J]. Advances in Aeronautical Science and Engineering, 2011, 2(4):11-20(in Chinese).
[18] 王生楠, 郑晓玲. 运输类飞机防止广布疲劳损伤的新规章解读[J]. 航空学报, 2010, 31(9):1758-1768. WANG S N, ZHENG X L. Study on proposed rules to preclude widespread fatigue damage for transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1758-1768(in Chinese).
[19] 梁小林,许希武,林智育.复合材料层板低速冲击后疲劳性能实验研究[J].材料工程, 2016, 44(12):100-106. LIANG X L, XU X W, LIN Z Y. Fatigue performance of composite laminates after low-velocity impact[J]. Journal of Materials Engineering, 2016,44(12):100-106(in Chinese).
[20] Federal Aviation Administration. Advisory circular composite aircraft structure:AC20-107B[R]. Washington, D.C.:Federal Aviation Administration, 1998.
[21] ALBERT W A J. Vber treibseile am harz[M]//Archive für Mineralogie:Geognosie, Bergbau und Hüttenkunde, 1838:215-234.
[22] WÖHLER A. Versuche liber die Festigkeit der Eisenbahnwagenachsen[J]. Zeitschrift für Bauwesen, 1860, 10(4):160-161.
[23] BASQUIN O H. The exponential law of endurance tests[C]//Proceedings of the American Society for Testing and Materials, 1910:625-630.
[24] GOODMAN J. Mechanics applied to engineering[M]. London:Longmans Green, 1899.
[25] SMITH K N, WATSON P, TOPPER T H. Stress-strain function for the fatigue of materials[J]. Journal of Materials, 1970, 5:767-778.
[26] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[M]//Effects of Environment and Complex Load History on Fatigue Life. West Conshohocken:ASTM International, 1970:1-14.
[27] SENDECKYJ G P. Constant life diagrams-A historical review[J]. International Journal of Fatigue, 2001, 23(4):347-353.
[28] DOWLING N E, CALHOUN C A, ARCARI A, et al. Mean stress effects in stress-life fatigue and the Walker equation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(3):163-179.
[29] MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12:159-164.
[30] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003. YAO W X. Fatigue life prediction of structures[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[31] SHANLEY F R. A proposed mechanism of fatigue failure[M]//Colloquium on Fatigue. Berlin:Springer, 1956:251-259.
[32] GROVER H J. Fatigue of aircraft structures[R]. Washington, D.C.:U.S. Government Printing Office, 1966.
[33] FATEMI A, YANG L. Cumulative fatigue damage and life prediction theories:A survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue, 1998, 20(1):9-34.
[34] SCHIJVE J. Some remarks on the cumulative damage concept[C]//Minutes 4th ICAF Conference, 1956.
[35] HAIGH B P. Experiments on the fatigue of brasses[J]. Journal of the Institute of Metals, 1917, 18:55-77.
[36] GOUGH H J. Crystalline structure in relation to failure of metals, especially by fatigue[C]//Proceedings of the American Society for Testing and Materials, 1933:3-114.
[37] NEUBER H. Theory of notch stresses:Principle for exact stress calculations[M]. Ann Arbor:Edwards, 1946.
[38] LANGER B F. Fatigue failure from stress cycles of varying amplitude[J]. Journal of Applied Mechanics, 1937:59:160-162.
[39] WEIBULL W. A statistical theory of the strength of materials[C]//Proceedings of Royal Swedish Academy of Engineering Sciences, 1939.
[40] BACH C. Die maschinen-elemente[M]. Leipzig:Alfred Kröner Verlag, 1913.
[41] SMITH J H. Some experiments on the fatigue of metals[J]. Journal of Iron and Steel Institute, 1910, 91:365-397.
[42] HAIGH B P. Report on alternating stress tests of a sample of mild steel received from the British Association Stress Committee[R]. 1915.
[43] MOORE H F, SEELEY F B. The failure of metals under repeated stress[C]//Proceedings of the American Society for Testing and Materials, 1915:437-466.
[44] SMITH J H, WEDGWOOD G A. Stress-strain loops for steel in the cyclic state[J]. Journal of Iron and Steel Institute, 1915, 82:246-318.
[45] GOUGH H J, HANSON D. The behaviour of metals subjected to repeated stresses[C]//Proceedings of the Royal Society, 1923:535-565.
[46] JENKIN C F. The fatigue failure of metals[C]//Proceedings of the Royal Society, 1923:121-138.
[47] MASING G. Eigenspannungen und verfestigung beim messing[C]//Proceedings of the Second International Conference of Applied Mechanics, 1926:332-335.
[48] SODERBERG C R. Factor of safety and working stress[J]. Transactions of the American Society of Mechanical Engineers, 1939, 52:13-28.
[49] IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957, 24:361-364.
[50] PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85:528-534.
[51] ELBER W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1):37-45.
[52] ELBER W. The significance of fatigue crack closure[C]//Damage Tolerance in Aircraft Structures Annual Meeting, 1971:230-242.
[53] KITAGAWA H, TAKAHASHI S. Applicability of fracture mechanics to very small cracks or the cracks in the early stage[C]//Proceedings of Second International Conference on Mechanical Behavior of Materials, 1976:627-631.
[54] IRWIN G R. Fracture[M]//Encylopedia of Physics, Vol. VI-Elasticity and Plasticity. Berlin:Springer, 1958:551-590.
[55] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of Mechanics and Physics of Solids, 1960, 8(2):100-104.
[56] RICE J R, ROSENGREN G F. Plane strain deformation near a crack tip in a power law hardening materials[J]. Journal of Mechanics and Physics of Solids, 1968, 16(1):1-12.
[57] HUTCHINSON J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of Mechanics and Physics of Solids, 1968, 16(1):13-31.
[58] WELLS A A. Unstable crack propagation in metals:cleavage and fast fracture[C]//Proceedings of the Crack Propagation Symposium, 1961:210-230.
[59] RICE J R. A path independent integral and the approximate analysis of strain concentrations[J]. Journal of Applied Mechanics, 1968, 35(2):379-386.
[60] VASCO-OLMOA J M, DÍAZ F A, ANTUNES F V, et al. Characterization of fatigue crack growth using digital image correlation measurements of plastic CTOD[J]. Theoretical and Applied Fracture Mechanics, 2019, 101:332-341.
[61] HOSSEINI Z S, DADFARNIA M, SOMERDAY B P, et al. On the theoretical modeling of fatigue crack growth[J]. Journal of the Mechanics and Physics of Solids, 2018, 121:341-362.
[62] FORSYTH P J E, RYDER D A. Some results of the examination of aluminum alloy specimen fracture surfaces[J]. Metallurgia, 1961, 63:17-124.
[63] PHILLIPS D C, SCOTT J M. The shear fatigue of unidirectional fiber composites[J]. Composites, 1977, 8(4):233-236.
[64] ROTEM A. Fatigue behavior of multidirectional laminate[J]. AIAA Journal, 1979, 17(3):271-277.
[65] DEMUTS E, SHYPRYKEVICH P. Accelerated environmental testing of composites[J]. Composites, 1984, 15(1):25-31.
[66] AGARWAL B D, JONEJA S K. Flexural fatigue properties of unidirectional GRP in the transverse direction[J]. Composites, 1979, 10(1):28-30.
[67] SUN C T, CHIM E S. Fatigue retardation due to creep in a fibrous composite[C]//Symposium on Fatigue of Fibrous Composite Materials, 1981:233-242.
[68] SENDECKYJ G P. Life prediction for resin-matrix composite materials[J]. Composite Materials Series, 1991, 4:431-483.
[69] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4):448-464.
[70] WHITWORTH H A. Evaluation of the residual strength degradation in composite laminates under fatigue loading[J]. Composite Structures, 2000, 48:261-264.
[71] YANG J N, YANG S H, JONES D L. A stiffness-based statistical model for predicting the fatigue life of graphite/epoxy laminates[J]. Composites Technology and Research, 1989, 11:129-134.
[72] 郑晓玲. 民机结构耐久性与损伤容限设计手册(上册):疲劳设计与分析[M]. 北京:航空工业出版社, 2003:1-15. ZHENG X L. Design manual for durability and damage tolerance of civil aircraft structure (Volume I):Fatigue design and analysis[M]. Beijing:Aviation Industry Press, 2003:1-15(in Chinese).
[73] 郑楚鸿.高周疲劳设计方法——应力场强法的研究[D]. 北京:清华大学, 1984. ZHENG C H. Research on high cycle fatigue design method-Stress field strength method[D]. Beijing:Tsinghua University,1984.
[74] TAYLOR D. The theory of critical distances-A new perspective in fracture mechanics[M]. Amsterdam:Elsevier, 2006.
[75] 刘文珽. 军用飞机结构疲劳设计细节疲劳额定值方法指南[M]. 北京:国防工业出版社, 2012. LIU W T. Military aircraft structural fatigue design details fatigue rating methodological guide[M]. Beijing:National Defense Industry Press, 2012(in Chinese).
[76] 刘文珽. 结构可靠性设计手册[M]. 北京:国防工业出版社, 2008. LIU W T. Structural reliability design manual[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[77] 张福泽.飞机日历寿命确定的新方法研究[M]. 北京:气象出版社, 2000. ZHANG F Z. A new method for determining the calendar life of aircraft[M]. Beijing:China Meteorological Press, 2000(in Chinese).
[78] 石荣, 李郑琦, 王学德, 等. 飞机结构日历寿命研究现状及关键问题[J]. 中国腐蚀与防护学报, 2008, 28(6):381-386. SHI R, LI Z Q, WANG X D, et al. Current status and development of calendar life of aircraft structure[J]. Journal of Chinese Society for Corrosion and Protection, 2008, 28(6):381-386(in Chinese).
[79] 杨晓华,姚卫星,陈跃良. 考虑日历环境影响的结构日历寿命研究[J]. 应用力学学报,2002,19(3):157-159. YANG X H, YAO W X, CHEN Y L. Research calendar life of aircraft structure considering the effects of calendar environment[J]. Chinese Journal of Applied Mechanics, 2002, 19(3):157-159(in Chinese).
[80] 董登科,王俊扬. 关于军用飞机服役日历年限评定用的当量环境谱[J]. 航空学报,1998,19(4):451-455. DONG D K, WANG J Y. Equivalent environment spectrum research on service calendar time for fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):451-455(in Chinese).
[81] 刘文珽,李玉海.飞机结构日历寿命体系评定技术[M]. 北京:航空工业出版社,2004. LIU W T, LI Y H. Evaluation technology of calendar life system for aircraft structure[M]. Beijing:Aviation Industry Press, 2004(in Chinese).
[82] 陈群志,李喜明,周希沅,等. 飞机结构典型环境腐蚀当量关系研究[J]. 航空学报,1998,19(4):414-418. CHEN Q Z, LI X M, ZHOU X Y, et al. Study on equivalent relationship of typical corrosion environment of aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4):414-418(in Chinese).
[83] 陈群志, 刘文珽, 陈志伟, 等. 腐蚀环境下飞机结构日历寿命研究现状与关键技术问题[J]. 中国安全科学学报, 2000, 10(3):42-47. CHEN Q Z,LIU W T,CHEN Z W, et al. Current status and key techniques of calendar life of aircraft structure under corrosive environment[J]. China Safety Science Journal, 2000, 10(3):42-47(in Chinese).
[84] SODEN P D, KADDOUR A S, HINTON M J. Recommendations for designers and researchers resulting from the world-wide failure exercise[J]. Composites Science and Technology, 2004, 64:589-604.
[85] 孙侠生. 民用飞机结构强度刚度设计与验证指南(第三册)[M]. 北京:航空工业出版社, 2012. SUN X S. Guide for strength and stiffness design and verification of civil aircraft structures:Volume 3[M]. Beijing:Aviation Industry Press, 2012(in Chinese).
[86] 郦正能, 张纪奎. 飞机结构疲劳和损伤容限设计[M]. 北京:北京航空航天大学出版社, 2016. LI Z N, ZHANG J K. Fatigue and damage tolerance design for aircraft structures[M]. Beijing:Beihang University Press, 2016(in Chinese).
[87] ELLIS R M, GROSS P C, YATES J B, et al. F-35 structural design, development, and verification[M]//The F-35 Lightning II:From Concept to Cockpit. Bethesda:Lockheed Martin Corporation, 2019:253-285.
[88] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US Air Force vehicles:AIAA-2012-1818[R]. Reston:AIAA, 2012.
[89] NASA. Fracture control requirements for spaceflight hardware:NASA-STD-5019[R]. Washington, D.C.:NASA, 2008.
[90] NASA. Fracture control implementation handbook for payloads, experiments, and similar hardware:NASA-STD-5010[R]. Washington, D.C.:NASA, 2005.
[91] SHAFTO M, CONROY M, DOYLE R. et al. Modeling, simulation, information technology and processing roadmap:Technology area 11[R]. Washington, D.C.:NASA, 2010.
[92] PIASCIK R, VICKERS J, LOWRY D, et al. Materials, structures, mechanical systems, and manufacturing roadmap:Technology area 12[R]. Washington, D.C.:NASA, 2010.
[93] KOBRYN P A, TUEGEL E J. Condition-based maintenance plus structural integrity (CBM+SI) & the airframe digital twin:88ABW-201101428[R]. Wright-Patterson AFB:The Air Force Research Laboratory, 2011.
[94] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011:154798.
[95] National Science Foundation (NSF). Simulation-based engineering science:Revolutionizing engineering science through simulation[R]. Arlington:National Science Foundation, 2006.
[96] ALLISON J, COMPANY F M. Integrated computational materials engineering:A transformational discipline for improved competitiveness and national security[M]. Washington, D.C.:The National Academies Press, 2010.