This paper presents a rigid-elastic coupled flight dynamic modeling method for a Heavy Lift Helicopter (HLH), considering the inherent characteristics of heavy weight and slow rotational speed. The method bridges flight dynamics and coupled rotor-fuselage aeroelastic dynamics, expanding the interested range of frequency to 5 Hz with an additional consideration of the elastic fuselage and blades. Based on the impedance matching method, explicit coupled dynamic equations were derived to simulate the helicopter aeroelastic characteristics in real flight. Finally, this model was used to calculate and analyze the flight and air resonance characteristics for an example HLH in hover. The results show that rotor-fuselage coupling causes the progressive lag mode and fuselage bending mode to approach each other and then separate after arriving at the same point with the increase of the rotational speed, which might result in high frequency transient vibration. The regressive lag mode is unstable without sufficient lag damping; however, with the increase of equivalent lag damping, the second order periodic lag mode will be coupled with the fuselage bending mode. The blade elastic modes are coupled with the fuselage bending mode and the collective flap mode without obvious instability.
WANG Luofeng
,
CHEN Renliang
. Rigid-elastic coupled flight dynamic modeling and air resonance stability analysis for heavy lift helicopter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(12)
: 124634
-124634
.
DOI: 10.7527/S1000-6893.2020.24634
[1] SAHASRABUDHE V, FAYNBERG A, KUBIK S, et al. CH-53K control laws:an overview and some analytical results[C]//Proceedings of the American Helicopter Society 66th Annual Forum, 2010.
[2] 吴希明. 直升机动力学工程设计[M]. 北京:航空工业出版社, 2017. WU X M. Engineering design of helicopter dynamics[M]. Beijing:Aviation Industry Press, 2017(in Chinese).
[3] 李攀. 旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究[D]. 南京:南京航空航天大学, 2010. LI P. Rotor unsteady free-vortex wake model and investigation on high-fidelity modeling of helicopter flight dynamics[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[4] FRIEDMANN P P, HODGES D H. Rotary wing aeroelasticity-A historical perspective[J]. Journal of Aircraft, 2003, 40(6):1019-1046.
[5] FRIEDMANN P P. Rotary-wing aeroelasticity:Current status and future trends[J]. AIAA Journal, 2004, 42(10):1953-1972.
[6] WASZAK M R, DAVIDSON J B, SCHMIDT D K. A simulation study of the flight dynamics of elastic aircraft:NASA-CR-4102[R]. Washington, D.C.:NASA, 1987.
[7] MEIROVITCH L, TUZCU I. Unified theory for the dynamics and control of maneuvering flexible aircraft[J]. AIAA Journal, 2004, 42(4):714-727.
[8] 郭东, 徐敏, 陈士橹. 弹性飞行器飞行动力学建模研究[J]. 空气动力学学报, 2013, 31(4):413-419, 436. GUO D, XU M, CHEN S L. Research on flight dynamic modeling of highly flexible aircrafts[J]. Acta Aerodynamica Sinica, 2013, 31(4):413-419, 436(in Chinese).
[9] SAHASRABUDHE V, FAYNBERG A, POZDIN M, et al. Balancing CH-53K handling qaualities and stability margin requirements in the presence of heavy external loads[C]//Proceedings of the American Helicopter Society 63rd Annual Forum, 2007.
[10] CRIBBS R C, FRIEDMANN P P, CHIU T. Coupled helicopter rotor/flexible fuselage aeroelastic model for control of structural response[J]. AIAA Journal, 2000, 38(10):1777-1788.
[11] MEIROVITCH L, TUZCU I. The lure of the mean axes[J]. Journal of Applied Mechanics, 2007, 74(3):497-504.
[12] SHABANA A. Dynamics of multibody systems[M]. New York:Cambridge University Press, 2005.
[13] KATO K, YAMANE T. A calculation of rotor impedance for hovering articulated-rotor helicopters[J]. Journal of Aircraft, 1979, 16(1):15-22.
[14] KATO K, YAMANE T. Calculation of rotor impedance for articulated-rotor helicopters in forward flight[J]. Journal of Aircraft, 1979, 16(7):470-476.
[15] ORZECHOWSKI G, MATIKAINEN M K, MIKKOLA A M. Inertia forces and shape integrals in the floating frame of reference formulation[J]. Nonlinear Dynamics, 2017, 88(3):1953-1968.
[16] 虞志浩. 旋翼柔性多体系统气动弹性研究[D]. 南京:南京航空航天大学, 2012. YU Z H. Research on aeroelasticity of rotor flexible multibody system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[17] HOWLETT J J. UH-60A black hawk engineering simulation program:Volume I-mathematical model:NASA-CR-166309[R]. Washington, D.C.:NASA, 1981.
[18] BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter:NASA-TM-88360[R]. Washington, D.C.:NASA, 1987.
[19] BOUSMAN W G. An experimental investigation of the effects of aeroelastic couplings on aeromechanical stability of a hingeless rotor helicopter[J]. Journal of the American Helicopter Society, 1981, 26(1):46-54.
[20] WANG L F, CHEN R L, YAN X F. Trajectory optimization of aerial slung load release for piloted helicopters[J]. Chinese Journal of Aeronautics, 2021, 34(2):229-239.
[21] DUTTON W J. Parametric analysis and preliminary design of a shaft-driven rotor system for a heavy lift helicopter[R]. Fort Eustis:U. S. Army Aviation Materiel Laboratories, 1967.
[22] SHAUGHNESSY J D, DEAUX T N, YENNI K R. Development and validation piloted simulation helicopter and external sling load:NASA-TR-1285[R]. Washington, D.C.:NASA, 1979.
[23] BRAMWELL A R S, DONE G, BALMFORD D. Rotor induced vibration[M]//Bramwell's Helicopter Dynamics. Amsterdam:Elsevier, 2000:290-318.
[24] ORMISTON R A. Rotor-fuselage dynamics of helicopter air and ground resonance[J]. Journal of the American Helicopter Society, 1991, 36(2):3-20.
[25] 胡国才, 向锦武, 张晓谷. 黏弹减摆器非线性特性对直升机前飞空中共振的影响分析[J]. 航空学报, 2005, 26(2):199-202. HU G C, XIANG J W, ZHANG X G. Analysis of the effect of nonlinear characteristics of elastomeric lag damper on helicopter air resonance in forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2):199-202(in Chinese).
[26] 王波, 李书, 张晓谷. 非线性叶间黏弹减摆器对直升机空中共振的影响分析[J]. 航空学报, 2007, 28(3):550-555. WANG B, LI S, ZHANG X G. Influence analysis of helicopter air resonance with nonlinear interblade viscoelastic dampers[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):550-555(in Chinese).
[27] 薛海峰, 向锦武, 张晓谷. 直升机前飞空中共振稳定性和各自由度相互作用研究[J]. 航空学报, 2005, 26(4):454-457. XUE H F, XIANG J W, ZHANG X G. Investigation of helicopter air resonance dynamic stability in forward flight and mutual excitation of different degrees of freedom[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):454-457(in Chinese).