To satisfy the need for high-precision wind tunnel testing, research on flow quality measurement technique of compressible fluid in a subsonic wind tunnel is carried out. On the premise of one-dimensional is entropic flow, the modes of disturbance included in the freestream of the wind tunnel are analyzed. The method for solving modes of disturbance and acoustic and vorticity modes components of flow variables is derived theoretically, and its relationship with mass flow fluctuation, total temperature fluctuation and their cross-correlation as known quantities is established. Flow quality measurement experiments are conducted with Mach number varying from 0.3 to 0.7. Modes of disturbance and acoustic and vorticity modes components of flow variables are solved using the established method, and the variation rule of the results with Mach number is analyzed. The uncertainty of modes of disturbance and acoustic and vorticity modes components of flow variables is obtained using Monte Carlo simulation and uncertainty transfer formula. Uncertainty accounts for about 1% of the corresponding variable and most results are only on the order of 0.1%, exhibiting high accuracy of the flow quality measurement test results. The results validate the feasibility of the established method for analysis of modes of disturbances in compressible fluid in the subsonic wind tunnel.
[1] RESHOTKO E, SARIC W S, NAGIB H M. Flow quality issues for large wind tunnels:AIAA-1997-0225[R]. Reston:AIAA, 1997.
[2] LOEHRKE R I, NAGIB H M. Control of free-stream turbulence by means of honeycombs:a balance between suppression and generation[J]. Journal of Fluids Engineering, 1976, 98:342-351.
[3] TAN-ATICHAT J, NAGIB H M, LOEHRKE R I. Interaction of free-stream turbulence with screens and grids:a balance between turbulence scales[J]. Journal of Fluid Mechanics, 1982, 114:501-528.
[4] WIGELAND R A, TAN-ATICHAT J, NAGIB H M. Evaluation of a new concept for reducing freestream turbulence in wind tunnels[J]. Journal of Aircraft, 1980, 18(7):528-536.
[5] PATE S R. Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise a review:AIAA-1980-0431[R]. Reston:AIAA, 1980.
[6] TREON S L, STEINLE F W, HOFSTETTER W R, et al. Data correlation from investigations of a high-subsonic speed transport aircraft model in three major transonic wind tunnels:AIAA-1969-794[R]. Reston:AIAA, 1969.
[7] KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10):657-682.
[8] MORKOVIN M V. Fluctuations and hot-wire anemometry in compressible flows:AGARDograph No. 24[R]. North Atlantic Treaty Organization, 1956.
[9] MORKOVIN M V. On transition experiments at moderate supersonic speeds[J]. Journal of the Aeronautical Sciences, 1957, 24(7):480-486.
[10] WU J, ZAMRE P, RADESPIEL R. Flow quality experiment in a tandem nozzle wind tunnel at Mach 3[J]. Experiments in Fluids, 2015, 56:20.
[11] SCHILDEN T, SCHRODER W, RAZA S, et al. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel[J]. Physics of Fluids, 2016, 28:056104.
[12] KENDALL J M. Boundary layer receptivity to freestream turbulence:AIAA-1990-1504[R]. Reston:AIAA, 1990.
[13] KENDALL J M. Experiments on boundary-layer receptivity to freestream turbulence:AIAA-1998-0530[R]. Reston:AIAA, 1998.
[14] KOSORYGIN V S, RADEZTSKY R H, SARIC W S. Laminar-turbulent transition[M]. Berlin:Springer, 1995:517-524.
[15] 刘大伟, 熊贵天, 刘洋, 等. 宽体客机高速风洞试验数据修正方法[J]. 航空学报, 2019, 40(2):522205. LIU D W, XIONG G T, LIU Y, et al. Method of test data correction for wide-body aircraft in high speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522205(in Chinese).
[16] 杨贤文, 刘昕. 运输机模型高速风洞试验支撑形式及支撑干扰研究[J]. 空气动力学学报, 2015, 33(6):721-727. YANG X W, LIU X. Support form and support interference on transport aircraft model in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(6):721-727(in Chinese).
[17] 黄霞, 卢静, 张海酉, 等. 空中加油机加油软管锥套气动稳定性风洞试验技术[J]. 空气动力学学报, 2019, 37(1):140-146. HUANG X, LU J, ZHANG H Y, et al. Wind tunnel test technique for aerodynamic stability of refueling hose-drogue of aerial tanker[J]. Acta Aerodynamica Sinica, 2019, 37(1):140-146(in Chinese).
[18] MASUTTI D, SPINOSA E, CHAZOT O, et al. Disturbance level characterization of a hypersonic blowdown facility[J]. AIAA Journal, 2012, 50(12):2720-2730.
[19] ALI S R C, WU J, RADESPIEL R, et al. High-frequency measurements of acoustic and entropy disturbances in a hypersonic wind tunnel:AIAA-2014-2644[R]. Reston:AIAA, 2014.
[20] MUNOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in ludwieg tubes at Mach 6:AIAA-2019-0878[R]. Reston:AIAA, 2019.
[21] 王文, 刘志刚, 张智. 气体普朗特数变化规律的初步研究[J]. 西安交通大学学报, 1999, 33(1):77-80. WANG W, LIU Z G, ZHANG Z. Variation of Prandtl number of gas in dilute and dense state[J]. Journal of Xi'an Jiaotong University, 1999, 33(1):77-80(in Chinese).
[22] 钱翼稷. 空气动力学[M]. 北京:北京航空航天大学出版社, 2004:193-196. QIAN Y J. Aerodynamics[M]. Beijing:Beihang University Press, 2004:193-196(in Chinese).
[23] LOGAN P. Modal analysis of hot-wire measurements in supersonic turbulence:AIAA-1988-0423[R]. Reston:AIAA, 1988.
[24] 杜钰锋, 林俊, 王勋年, 等. 变热线过热比可压缩流湍流度测量方法优化[J]. 航空学报, 2019, 40(12):123067. DU Y F, LIN J, WANG X N, et al. Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123067(in Chinese).
[25] 吕金磊, 盛美萍, 廖达雄, 等. 基于实验的跨声速风洞试验段噪声机理研究[J]. 空气动力学学报, 2014, 32(4):488-492. LV J L, SHENG M P, LIAO D X, et al. Investigation about transonic wind tunnel test section noise mechanism based on experimental[J]. Acta Aerodynamica Sinica, 2014, 32(4):488-492(in Chinese).
[26] 杜钰锋, 林俊, 马护生, 等. 可压缩流体恒温热线风速仪校准方法[J]. 航空学报, 2017, 38(6):120600. DU Y F, LIN J, MA H S, et al. Calibration method for constant temperature hot-wire anemometer for compressible fluid[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120600(in Chinese).
[27] TAM C K W. Computational aeroacoustics-issues and methods[J]. AIAA Journal, 1995, 33(10):1788-1796.