Review

Research progress and technical challenges of space robot

  • MENG Guang ,
  • HAN Liangliang ,
  • ZHANG Chongfeng
Expand
  • 1. Space Structure and Mechanism Technology Laboratory, China Aerospace Science and Technology Group Co. Ltd, Shanghai 201109, China;
    2. Aerospace System Engineering Shanghai, Shanghai 201109, China;
    3. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China

Received date: 2020-03-11

  Revised date: 2020-03-28

  Online published: 2020-08-25

Supported by

National Natural Science Foundation of China (11932011); Civil Aerospace Technology Advance Research Project (D030103); Manned Space Advance Research Project (030601)

Abstract

Space robots as one of the enabling means to realize automatic and intelligent on-orbit operations, play a critical role in both manned and unmanned space scientific explorations. The engineering application status of several types of orbital space robots is firstly reviewed, including the International Space Station extravehicular and intravehicular robots, the Chinese Space Station robots, and some free flying space robots. First, the application status of two kinds of planetary robots successfully applied is also reviewed, including the lunar robots and the Mars robots. Secondl, in view of the increasingly complex task requirements for space robots, the technical challenges faced by space robots in mechanism configuration, actuator joints, end effectors, perception and cognition, mobility, dynamics and control are discussed. The exploration of some novel mechanism configurations for space robots in multi-arm, super redundancy, flexibility, reconfiguration and bionic design is then reviewed, and the research progress of active and passive compliant joints for space robots, as well as progress of space robot end-effectors in specialized tools and universal multi-finger dexterous hands is introduced. In addition, the research progress of new mobile mechanism configuration and high autonomous navigation for planetary robots multi-sensor integration and fusion, force and tactile perception of space robots, and multi-arm coordination control, compliance control, dynamic control for capturing on floating bases of space robots is reviewed. Finally, the future application of space robots in the capture and removal of orbital targets, in-orbit service and maintenance for high-value spacecraft, on-orbit assembly of large space structures, and planetary scientific explorations are prospected.

Cite this article

MENG Guang , HAN Liangliang , ZHANG Chongfeng . Research progress and technical challenges of space robot[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523963 -523963 . DOI: 10.7527/S1000-6893.2020.23963

References

[1] ZHANG T, XU K, YAO Z X, et al The progress of extraterrestrial regolith-sampling robots[J]. Nature Astronomy, 2019, 3(6):487-497.
[2] GAO Y, CHIEN S. Review on space robotics:toward top-level science through space exploration[J]. Science Robotics, 2017, 2:5074.
[3] STIEBER M, TRUDEL C, HUNTER D. Robotic systems for the international space station[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 1997:3068-3073.
[4] JORGENSEN G, BAINS E. SRMS history, evolution and lessons learned[C]//AIAA Space 2011 Conference and Exposition, 2011.
[5] SCOTT M A, GILBERT M G, DEMEO M E. Active vibration damping of the space shuttle remote manipulator system[J]. Journal of Guidance, Control and Dynamics, 1993, 16(2):275-280.
[6] LANDZETTEL K, BRUNNER B, SCHREIBER G, et al. MSS ground control demo with MARCO[C]//Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001.
[7] STIEBER M E, HUNTER D G, ABRAMOVICI A. Overview of the mobile servicing system for the international space station[C]//Proceedings of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in space, 1999:37-42.
[8] MCGREGOR R, OSHINOWO L. Flight 6A:deployment and checkout of the space station remote manipulator system (SSRMS)[C]//Proceedings of the 6th International Symposium on Artificial Intelligence,Robotics and Automation in Space (i-SAIRAS), 2001.
[9] PIEDBOEUF J C,DE C J,AGHILI F, et al. Task verification facility for the Canadian special purpose dextrous manipulator[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1999, 2:1077-1083.
[10] COLESHILL E, OSHINOWO L, REMBALA R, et al. Dextre:Improving maintenance operations on the international space station[J]. Acta Astronautica, 2009,64(9):869-874.
[11] GREGORY T, NEWMAN M. Thermal design considerations of the Robotic Refueling Mission (RRM)[C]//Proceedings of the 41 st International Conference on Environmental Systems. Reston:AIAA, 2011.
[12] MATSUEDA T, KURAOKA K, GOMA K, et al. JEMRMS system design and development status[C]//Proceedings of IEEE Telesystems Conference NTC'91, 1991, 1:391-395.
[13] PATTEN L, EVANS L, OSHINOWO L, et al. International Space Station robotics:a comparative study of ERA,JEMRMS and MSS[C]//Proceedings of the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA 2002’ ESTEC, 2002:1-8.
[14] NAOKI S, YASUFUMI W. JEMRMS design features and topics from testing[C]//Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS), 2001.
[15] PREUSCHE C, REINTSEMA D, LANDZETTEL K, et al. Robotics component verification on ISS ROKVISS-Preliminary results for telepresence[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems, 2005:4595-4601.
[16] DIFTLER M A, MEHLING J S, ABDALLAH M E, et al. Robonaut 2-the first humanoid robot in space[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 2010:2178-2183.
[17] AHLSTROM T, CURTIS A, DIFTLER M, et al. Robonaut 2 on the International Space Station:status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition. Reston:AIAA, 2013:1-14.
[18] 中国日报网. 日本小型机器人"KIROBO"在太空发出第一声[EB/OL](2013-09-05)[2020-03-10]. http://www.chinadaily.com.cn/hqzx/2013-09/05/content_16946748.htm. China Daily. Japanese small robot KIROBO makes the first sound in space[EB/OL] (2013-09-05)[2020-03-10]. http://www.chinadaily.com.cn/hqzx/2013-09/05/content_16946748.htm.
[19] SPACE.COM. Meet Skybot F-850, the Humanoid Robot Russia is launching into space. (2019-08-02)[2020-02-28].https://www.space.com/russia-launching-humanoid-robot-into-space.html
[20] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. Scientia Sinica Techologica, 2018, 48(12):1313-1320(in Chinese).
[21] 李大明, 饶炜, 胡成威, 等. 空间站机械臂关键技术研究[J]. 载人航天, 2014, 20(3):238-242. LI D M, RAO W, HU C W, et al. Key technology review of the research on the space station manipulator[J]. Manned Spaceflight, 2014, 20(3):238-242(in Chinese).
[22] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J]. 载人航天, 2015, 21(5):435-443. LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight, 2015, 21(5):435-443(in Chinese).
[23] HIRZINGER G, BRUNNER B, DIETRICH J, et al. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):649-663.
[24] HIRZINGER G, BRUNNER B, DIETRICH J, et al. ROTEX-the first remotely controlled robot in space[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1994:2604-2611.
[25] KIMURA S, OKYUAMA T. Robot-aided remote inspection experiment on STS-85[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1290-1297.
[26] YOSHIDA K. Achievements in space robotics[J]. IEEE Robotics & Automation Magazine, 2009, 16(4):20-28.
[27] ODA M, KIBE K, YAMAGATA F. ETS-VⅡ, Space robot in-orbit experiment satellite[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996:739-744.
[28] OHKAMI Y, ODA M. NASDA's activities in space robotics[C]//Proceedings of Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999:11-18.
[29] OGILVIE A, ALLPORT J, HANNAH M, et al. Autonomous robotic operations for on-orbit satellite servicing[C]//Proceedings of SPIE, 2008, 6958:695809.
[30] 中国运载火箭技术研究院. 空间机械臂原理样机[EB/OL]. (2017-08-18)[2020-02-28]. http://www.calt.com/n484/n517/n608/c9360/content.html. China Academy of Launch Vehicle Technology. Prototype of space manipulator[EB/OL]. (2017-08-18)[2020-02-28]. http://www.calt.com/n484/n517/n608/c9360/content.html
[31] SEENI A, SCHÄFER B, HIRZINGER G. Robot mobility systems for planetary surface exploration-state-of-the-art and future outlook:a literature survey[M]. 2010:189-208.
[32] WILLIAMSON M. Man on the moon lunar exploration[J]. Engineering Science and Education Journal, 2002, 12:217-226.
[33] 张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学:技术科学, 2014, 44(5):483-491. ZHANG Y H, XIAO J, ZHANG X W, et al. Design and implementation of Chang'E-3 rover location system[J]. Scientia Sinica Technologica, 2014, 44(5):483-491. (in Chinese)
[34] 贾阳, 张建利, 李群智, 等. 嫦娥三号巡视器遥操作系统设计与实现[J]. 中国科学:技术科学, 2014, 44(5):470-482 JIA Y, ZHANG J L, LI Q Z, et al. Design and realization for teleoperation system of the Chang'E-3 rover[J]. Scientia Sinica Technologica, 2014, 44(5):470-482(in Chinese).
[35] LINDEMANN R A, BICKLER D B, HARRINGTON B D, et al. Mars exploration rover mobility development[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):19-26.
[36] LINDEMANN R A, VOORHEES C J. Mars Exploration Rover mobility assembly design, test and performance[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2005, 1:450-455.
[37] STELTZNER A, KIPP D, CHEN A, et al. Mars Science Laboratory entry, descent, and landing system[C]//IEEE Aerospace Conference, 2006.
[38] JANDURA L, BURKE K, KENNEDY B, et al. An overview of the Mars science laboratory sample acquisition, sample processing, and handling subsystem[C]//12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments, 2010:941-948.
[39] ROBINSON M, COLLINS C, LEGER P, et al. Test and validation of the Mars science laboratory robotic arm[C]//IEEE International Conference on System of Systems Engineering, 2013:184-189.
[40] ANDERSON R C, JANDURA L, OKON A B, et al. Collecting samples in Gale crater, Mars; an overview of the Mars science laboratory sample acquisition, sample processing and handling system[J]. Space Science Reviews, 2012, 170(1-4):57-75.
[41] JANDURA L. Mars science laboratory sample acquisition, sample processing, and handling:subsystem design and test challenges[C]//Proceedings of the 40th Aerospace Mechanisms Symposium, 2010:233-248.
[42] LAKDAWALLA E. The design and engineering of curiosity-how the mars rover performs its job[M]. Berlin:Springer Berlin Heidelberg, 2018:162-177.
[43] BONITZ R, SHIRAISHI L, ROBINSON M, et al. The Phoenix Mars lander robotic arm[C]//Proceedings of the IEEE Aerospace Conference, 2009:1-12.
[44] ARVIDSON R E, BONITZ R G, ROBINSON M L, et al. Results from the Mars Phoenix Lander Robotic Arm experiment[J]. Journal of Geophysical Research Atmospheres, 2009, 114(10):357-369.
[45] TREBI-OLLENNU A, KIM W, ALI K, et al. InSight Mars lander robotics instrument deployment system[J]. Space Science Reviews, 2018, 214(5):93.
[46] KRAUSE C, FANTINATI C, SMREKAR S, et al. HP3-Experiment on InSight mission-operations on Mars[C]//Proceedings of the 2018 SpaceOps Conference. Marseille, 2018.
[47] DIDOT F, SCHOONEJANS P, SCOTT R. Eurobot underwater model testing the co-operation between human & robot[C]//Proceedings of the 9th ESA Workshop on Advance Space Technologies for Robotics and Automation ‘ASTRA 2006’, 2006.
[48] BOSSE A B, BARNDS W J, BROWN M A, et al. SUMO:Spacecraft for the universal modification of orbits[C]//Proceedings of the SPIE, 2004,5419:36-46.
[49] KELM B E, ANGIELSKI J A, BUTCHER S T, et al. FREND:Pushing the envelope of space robotics[R]. Washington,D.C.:Naval Research Lab, 2008:239-241.
[50] 闫海江, 范庆玲, 康志宇, 等. DARPA地球静止轨道机器人项目综述[J]. 机器人, 2016(38):640. YAN H J, FAN Q L, KANG Z Y, et al. Review of DARPA's Geostationary Earth Orbit Robotic Programs[J]. Robot, 2016(38):640(in Chinese).
[51] PALJUG E, OHM T, HAYATI S. The JPL serpentine robot:a 12-DOF system for inspection[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1995:3143-3148.
[52] KIMURA S, YAMAMOTO H, NAGAI Y, et al. On-orbit performance demonstration of terrestrial processor for orbital maintenance system on the Micro-LabSat[C]//Proceedings of IEEE Aerospace Conference, 2004:193-201.
[53] 耿仕能, 王友渔, 陈丽莎, 等. 变刚度连续型机械臂设计与控制[J]. 宇航学报, 2018, 39(12):81-90. GENG S N, WANG Y Y, CHEN L C, et al. Design and control of a continuum arm with variable stiffness[J]. Journal of Astronautics, 2018, 39(12):81-90(in Chinese).
[54] AGHILI F, PARSA K. Design of a reconfigurable space robot with lockable telescopic joints[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006:4608-4614.
[55] 王康, 梁常春, 林云成, 等. 基于可伸缩机构的空间机械臂系统设计[J]. 载人航天, 2016, 22(5):537-543. WANG K, LIANG C C, LIN Y C, et al. Design of reconfigurable space manipulator system[J]. Manned Spaceflight, 2016, 22(5):537-543(in Chinese).
[56] AKIN D L, ROBERT B, RODERICK S, et al. MORPHbots:lightweight modular self-reconfigurable robotics for space assembly, inspection, and servicing[C]//Space 2006. Reston:AIAA, 2006:7408.
[57] YIM M, SHEN W M, SALEMI B, et al. Modular self-reconfigurable robot systems-grand challenges of robotics[J]. IEEE Robotics & Automation Magazine, 2007, 14(1):43-52.
[58] ZHANG Y, XU W F, WANG Z, et al. Dynamic modeling of self-reconfigurable multi-arm space robotic system with variable topology[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013:599-604.
[59] 戴振东, 彭福军. 空间机器人的研究与仿壁虎机器人关键技术[J]. 科学通报, 2015, 60(32):3114-3124 DAI Z D, PENG F J. Research progress of space robots and key technologies of gecko-inspired robots[J]. Chinese Science Bulletin, 2015, 60(32):3114-3124(in Chinese).
[60] 王思远, 唐玲, 王耀兵, 等. 一种腿臂融合四足机器人设计与分析[J]. 北京航空航天大学学报, 2017, 43(10):2099-2108. WANG S Y, TANG L, WANG Y B, et al. Design and analysis of an integrated leg-arm quadruped robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10):2099-2108(in Chinese).
[61] ALBU-SCHÄFFER A, HADDADIN S, OTT C, et al. The DLR lightweight robot:design and control concepts for robots in human environments[J]. Industrial Robot, 2007, 34(5):376-385.
[62] TSAGARAKIS N G, LAFFRANCHI M, VANDERBORGHT B, et al. A compact soft actuator unit for small scale human friendly robots[C]//IEEE International Conference on Robotics and Automation, 2009:4356-4362.
[63] WOLF S, EIBERGER O, HIRZINGER G. The DLR FSJ:energy based design of a variable stiffness joint[C]//Proceedings of the IEEE International Conference on Robotics & Automation, 2011:5082-5089.
[64] GREBENSTEIN M, ALBU-SCHÄFFER A, BAHLS T, et al. The DLR hand arm system[C]//Proceedings of the IEEE International Conference on Robotics & Automation, 2011:3175-3182.
[65] LIU H, TAN Y S, LIU Y W, et al. Development of Chinese large-scale space end-effector[J]. Journal of Central South University of Technology, 2011, 18(3):600-609.
[66] ZHU Y Y, GAO X H, XIE Z W, et al. Development of a gripper for Chinese space robot[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, 2006:1465-1470.
[67] NISHIDA S I, HIRABAYASHI H, YOSHIKAWA T. A new end-effector for on-orbit assembly of a large reflector[C]//Proceedings of IEEE 9th International Conference on Control, Automation, Robotics and Vision, ICARCV 2006, 2006.
[68] MICHAUD S, DOMINGUEZ M, NGUYEN U, et al. EUROBOT end-effectors[C]//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA 2004’ ESTEC, 2004.
[69] BRIDGWATER L B, IHRKE C A, DIFTLER M A, et al. The Robonaut 2 hand-designed to do work with tools[C]//Proceedings of IEEE International Conference on Robotics & Automation, 2012:3425-3430.
[70] BUTTERFASS J, GREBENSTEIN M, LIU H, et al. DLR-Hand Ⅱ:next generation of a Dextrous robot hand[C]//Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2001:109-114.
[71] LIU H, MEUSEL P, SEITZ N, et al. The modular multisensory DLR-HIT-Hand[J]. Mechanism Machine Theory, 2007, 42:612-625.
[72] LIU H, WU K, MEUSEL P, et al. Multisensory five-finger dexterous hand:The DLR/HIT Hand Ⅱ[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008:3692-3697.
[73] WILCOX B H, LITWIN T, BIESIADECKI J, et al. ATHLETE:A cargo handling and manipulation robot for the moon[J]. Journal of Field Robotics, 2007, 24(5):421-434.
[74] 韩亮亮, 陈萌, 张崇峰, 等.月面服务机器人研究进展及发展设想[J]. 载人航天,2018,24(3):313-320. HAN L L, CHEN M, ZHANG C F, et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight, 2018, 24(3):313-320(in Chinese).
[75] CORDES F, ROEHR T M, KIRCHNER F. RIMRES:a modular reconfigurable heterogeneous multi-robot exploration system[C]//The International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2012:1-7.
[76] FONDAHL K, KUEHN D, BEINERSDORF F, et al. An adaptive sensor foot for a bipedal and quadrupedal robot[C]//The Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2012:270-275.
[77] MANZ M, BARTSCH S, KIRCHNER F. MANTIS-A robot with advanced locomotion and manipulation abilities[C]//Proceedings of the 12th Symposium on Advanced Space Technologies in Robotics and Automation, 2013:1-7.
[78] CURTIS S, BRAND M, BOWERS G, et al. Tetrahedral robotics for space exploration[J]. IEEE Aerospace & Electronic Systems Magazine, 2007, 22(6):22-30.
[79] NESNAS I, BURDICK J W. Axel rovers for exploring extreme planetary terrains[C]//Proceedings of IEEE International Conference on Robotics and Automation, 2013.
[80] WAKABAYASHI S, SATO H, NISHIDA S I. Design and mobility evaluation of tracked lunar vehicle[J]. Journal of Terramechanics, 2009, 46(3):105-114.
[81] KOZMA R, HUNSTBERGER T, AGHAZARIAN H, et al. Implementing intentional robotics principles using SSR2K platform[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2262-2267.
[82] WHEELER D, CHÁVEZ-CLEMENTE D, SUNSPIRAL V. FootSpring:A compliance model for the ATHLETE family of robots:NASA ARC-E-DAA-TN1788[R]. Washington,D.C.:NASA,2010.
[83] MOTAHARI-BIDGOLI S M, MAHJOOB M J, DAVARIA S. Simulation and analysis of a TET-walker robot motion[C]//Proceedings of the 2nd RSI/ISM International Conference on Robotics and Mechatronics, 2014:914-919.
[84] BARES J E, WETTERGREEN D S. Dante Ⅱ:technical description, results, and lessons learned[J]. The International Journal of Robotics Research, 1999, 18(7):621-649.
[85] 陈建新, 邢琰, 滕宝毅, 等. 嫦娥三号巡视器GNC及地面试验技术[J]. 中国科学:技术科学, 2014, 44(5):461-469. CHEN J X, XING Y, TENG B Y, et al. Guidance, navigation and control technologies of Chang'E-3 lunar rover[J]. Scientia Sinica Technologica, 2014, 44(5):461-469(in Chinese).
[86] BRESINA J L, GOLDEN K, SMITH D E, et al. Increased flexibility and robustness of Mars Rovers[C]//Proceedings of the 5th international Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999.
[87] CASTANO R, JUDD M, ESTLIN T, et al. Current result from a rover science data analysis system[C]//2005 IEEE Aerospace Conference, 2005.
[88] CASTANO R, ESTLIN T, JUDD M. Intensity-based rock detection for acquiring onboard rover science[C]//Lunar and Planetary Science Conference, 2004.
[89] MAIMONE M W, JOHNSON A E, CHENG Y, et al. Autonomous navigation results from the Mars Exploration Rover (MER) mission[M]. Berlin:Springer, 2006:3-13.
[90] BAKAMBU J N, LANGLEY C, MUKHERJI R. Visual motion estimation:Localization performance evaluation tool for planetary rovers[C]//International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), 2008.
[91] CARSTEN J, RANKIN A, FERGUSON D, et al. Global planning on the Mars exploration rovers:software integration and surface testing[J]. Journal of Field Robotics, 2009, 26(4):337-357.
[92] AL-HASAN S, VACHTSEVANOS G. Intelligent route planning for fast autonomous vehicles operating in a large natural terrain[J]. Robotics and Autonomous Systems, 2002, 40(1):1-24.
[93] LIKHACHEV M, FERGUSON D, GORDON G, et al. Anytime dynamic A*:an anytime, replanning algorithm[C]//Proceedings of the International Conference on Automated Planning and Scheduling(ICAPS), 2005:262-271.
[94] FERGUSON D, STENTZ A. Using interpolation to improve path planning:The field D* algorithm[J]. Journal of Field Robotics, 2006, 23(2):79-101.
[95] 郝颖明, 付双飞, 范晓鹏, 等. 面向空间机械臂在轨服务操作的视觉感知技术[J]. 无人系统技术, 2018(1):54-65. HAO Y M, FU S F, FAN X P, et al. Vision perception technology for space manipulator on-orbit service operations[J]. Unmanned Systems Technology, 2018(1):54-65(in Chinese).
[96] OBERMARK J, CREAMER G, KELM B E, et al. SUMO/FREND:vision system for autonomous satellite grapple[C]//Proceedings of SPIE, 2007.
[97] ESTABLE S, TELAAR J, LANGE M. Definition of an automated vehicle with autonomous fail-safe reaction behavior to capture and deorbit envisat[C]//Proceedings of 7th European Conference on Space Debris, 2017.
[98] ECKSTEIN W. NASA's R2 vision software controls a space-robot-spectronet[DB/OL]. http://spectronet.de/story_docs/vortraege_2010/101109_vision/1_MVTec.pdf.
[99] 江左. 触须粘附式大尺寸非合作空间目标快速消旋方案设计与分析[D]. 哈尔滨:哈尔滨工业大学, 2017:27-35. JIANG Z. Research of quickly stop space junk rotating with gecko setae array of micro-nano project[D]. Harbin:Harbin Institute of Technology, 2017:27-35(in Chinese).
[100] 丁希仑. 拟人双臂机器人技术[M]. 北京:科学出版社, 2011:184-189. DING X L. Humanoid dual arm robot technology[M]. Beijing:Science Press, 2011:184-189(in Chinese).
[101] 刘嘉宇, 李通通, 余张国, 等. 多臂空间机器人操作大型目标的全身接触柔顺控制研究[J]. 兵工学报, 2019, 40(2):174-182. LIU J Y, LI T T, YU Z G, et al. On whole-body contact compliance control for spatial multi-arm robot manipulating a large target[J]. Acta Armamentarii, 2019, 40(2):174-182(in Chinese).
[102] ALBU-SCHAFFER A, OTT C, HIRZINGER G. A unified passivity-based control framework for position, torque and, impedance control of flexible joint robots[J]. The International Journal of Robotics Research, 2007, 26(1):23-39.
[103] OTT C, ALBU-SCHÄFFER A, KUGI A, et al. A passivity based cartesian impedance controller for flexible joint robots part i:torque feedback and gravity compensation[C]//IEEE International Conference on Robotics and Automation ICRA, 2004:2659-2665.
[104] PLATT R, ABDALLAH M E, WAMPLER C. Multiple-priority impedance control[C]//IEEE International Conference on Robotics and Automation ICRA, 2011:6033-6038.
[105] XU Y S, SHUM H Y, KANADE T, et al. Parameterization and adaptive control of space robot systems[J]. IEEE Transactions on Aerospace & Electronic Systems, 1994, 30(2):435-451.
[106] CHU Z Y, SUN F C, CUI J. Disturbance observer-based robust control of free-floating space manipulators[J]. IEEE Systems Journal, 2008, 2(1):114-119.
[107] BUSONIU L, SCHUTTER B D, BABUSKA R. Decentralized reinforcement learning control of a robotic manipulator[C]//International Conference on Control, Automation, Robotics and Vision, 2007:16.
[108] ODA M, OHKAMI Y. Coordinated control of spacecraft attitude and space manipulators[J]. Control Engineering Practice, 1997, 5:11-21.
[109] 徐文福, 孟得山,徐超,等. 自由漂浮空间机器人捕获目标的协调控制[J]. 机器人, 2013, 35(5):559-567 XU W F, MENG D S, XU C, et al. Coordinated control of a free-floating space robot for capturing a target[J]. Robot, 2013, 35(5):559-567(in Chinese).
[110] YOSHIKAWA S, YAMADA K. Angular momentum control of tumbling spacecraft by repetitive impluses[C]//ISAS Proceedings of 13th Workshop on Astrodynamics and Flight Mechanics, 2004:76-83.
[111] DIMITAR D. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//International Conference on Intelligent Robots and Systems, 2004:3345-3350.
Outlines

/