Article

Aging mechanism of G814/3233 composite in marine environment and correlation between accelerated aging and natural aging

  • WANG Andong ,
  • BIAN Guixue ,
  • ZHANG Yong ,
  • CHEN Yueliang ,
  • ZHANG Zhuzhu ,
  • ZHANG Yangguang
Expand
  • Naval Aviation University, Qingdao Campus, Qingdao 266041, China

Received date: 2020-05-21

  Revised date: 2020-06-16

  Online published: 2020-08-21

Supported by

"Green Innovation Science and Technology Plan" of Colleges and Universities in Shandong Province (2020KJA014)

Abstract

To explore the aging mechanism and the correlation between laboratory accelerated aging environments and real service environments of Carbon Fiber Reinforced Plastics (CFRP) for aviation, the G814/3233 composite commonly used in aircraft and the marine environment are taken as the research object and the service background, respectively. Laboratory accelerated aging tests and natural exposure tests on board were conducted, and the mechanical properties, microstructure and structural composition of the specimen before and after aging were observed. The traditional large sample statistical method was improved, the small sample method for natural aging equation determination proposed, and the data sample effectively expanded. The equivalent conversion coefficient calculation method based on the longitudinal-transverse shear strength retention rate was proposed, and the relevant verification test was carried out. The results show that the surface resin and the carbon fiber/resin interface of G814/3233 composite are destroyed after accelerated aging for one month. The residual strength, shear strength and glass transition temperature decrease by 6.93%, 7.30% and 0.87%, respectively. The storage modulus increases by about 5 GPa at room temperature. The aging mechanism and the median curve of longitudinal-transverse shear strength of this type of CFRP in marine environments were obtained. The equivalent conversion coefficient between the natural aging environment and the accelerated aging environment is 7.25. The laboratory accelerated aging method established in this paper has good acceleration, simulation and reproducibility for the natural aging.

Cite this article

WANG Andong , BIAN Guixue , ZHANG Yong , CHEN Yueliang , ZHANG Zhuzhu , ZHANG Yangguang . Aging mechanism of G814/3233 composite in marine environment and correlation between accelerated aging and natural aging[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(5) : 524260 -524260 . DOI: 10.7527/S1000-6893.2020.24260

References

[1] 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9):223688. LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):223688(in Chinese).
[2] 贾宝惠, 张刚, 蔺越国, 等. 湿热环境下含分层平面编织玻璃纤维/环氧树脂基复合材料层合板振动特性[J]. 复合材料学报, 2019, 36(4):892-904. JIA B H, ZHANG G, LIN Y G, et al. Vibration characteristic of delaminated plain woven fabric glass fiber/epoxy composite laminate under hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2019, 36(4):892-904(in Chinese).
[3] 牛一凡, 李璋琪, 朱晓峰. 全湿热场下碳纤维/环氧树脂复合材料弯曲性能及寿命预测[J]. 复合材料学报, 2020, 37(1):104-112. NIU Y F, LI Z Q, ZHU X F. Flexural properties and life-time estimation of carbon fiber/epoxy composite under hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2020, 37(1):104-112(in Chinese).
[4] 杨强, 邵闯, 方可强. 航空发动机复合材料叶片振动疲劳特性研究[J]. 实验力学, 2014, 29(3):361-367. YANG Q, SHAO C, FANG K Q. Vibration fatigue characteristic study of aeroengine composite blade[J]. Journal of Experimental Mechanics, 2014, 29(3):361-367(in Chinese).
[5] 回丽, 张旭, 许磊, 等. 碳纤维/环氧树脂复合材料湿热老化后的力学性能[J]. 机械工程材料, 2016, 40(1):62-65, 97. HUI L, ZHANG X, XU L, et al. Mechanical properties of carbon fiber/epoxy resin composite after hygrothermal aging[J]. Materials for Mechanical Engineering, 2016, 40(1):62-65, 97(in Chinese).
[6] 张颖军, 朱锡, 梅志远, 等. 海洋环境载荷下T300/环氧复合材料自然老化特性实验研究[J]. 材料工程, 2011, 39(12):25-28. ZHANG Y J, ZHU X, MEI Z Y, et al. Experimental study on natural ageing character of T300/epoxy composite under marine environmental load[J]. Journal of Materials Engineering, 2011, 39(12):25-28(in Chinese).
[7] 陈跃良, 刘旭. 聚合物基复合材料老化性能研究进展[J]. 装备环境工程, 2010, 7(4):49-56. CHEN Y L, LIU X. Progress of aging performance research of polymer matrix composites[J]. Equipment Environmental Engineering, 2010, 7(4):49-56(in Chinese).
[8] 王云英, 刘杰, 孟江燕, 等. 纤维增强聚合物基复合材料老化研究进展[J]. 材料工程, 2011, 39(7):85-89. WANG Y Y, LIU J, MENG J Y, et al. A review on aging behaviors of fiber reinforced polymer-matrix composites[J]. Journal of Materials Engineering, 2011, 39(7):85-89(in Chinese).
[9] 黄超, 陶春虎, 王占彬, 等. T300/648复合材料湿热老化行为与贮存寿命预测[J]. 四川兵工学报, 2013, 34(11):137-140. HUANG C, TAO C H, WANG Z B, et al. T300/648 composite material hygrothermal ageing behaviour and life prediction of storage[J]. Journal of Sichuan Ordnance, 2013, 34(11):137-140(in Chinese).
[10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强塑料层合板拉-拉疲劳性能试验方法:GB/T 16779-2008[S]. 北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for tension-tension fatigue of fiber reinforced plastic laminates:GB/T 16779-2008[S]. Beijing:Standards Press of China, 2009(in Chinese).
[11] 卞贵学, 王安东, 张勇, 等. 直升机复合材料环境谱及加速谱编制研究[J]. 失效分析与预防, 2018, 13(2):73-77, 88. BIAN G X, WANG A D, ZHANG Y, et al. Study on compilation of environment spectrum and acceleration spectrum for composite of a helicopter[J]. Failure Analysis and Prevention, 2018, 13(2):73-77, 88(in Chinese).
[12] 陈跃良, 王安东, 卞贵学, 等. 海洋环境下G827/3234复合材料老化机制及当量加速关系[J]. 复合材料学报, 2018, 35(12):3304-3312. CHEN Y L, WANG A D, BIAN G X, et al. Aging mechanism and equivalent acceleration relationship of G827/3234 composite in the marine environment[J]. Acta Materiae Compositae Sinica, 2018, 35(12):3304-3312(in Chinese).
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 聚合物基复合材料纵横剪切试验方法:GB/T 3355-2014[S]. 北京:中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for in-plane shear response of polymer matrix composite materials:GB/T 3355-2014[S]. Beijing:Standards Press of China, 2015(in Chinese).
[14] BEHERA A, DUPARE P, THAWRE M M, et al. Effects of hygrothermal aging and fiber orientations on constant amplitude fatigue properties of CFRP multidirectional composite laminates[J]. International Journal of Fatigue, 2020, 136:105590.
[15] BEHERA A, VISHWAKARMA A, THAWRE M M, et al. Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate[J]. Composites Communications, 2020, 17:51-55.
[16] 张颖军, 朱锡, 梅志远, 等. 聚合物基复合材料老化剩余强度等效预测方法研究[J]. 材料导报, 2012, 26(8):150-152, 160. ZHANG Y J, ZHU X, MEI Z Y, et al. Equivalent estimating methods of ageing on polymer matrix composites residual strength[J]. Materials Review, 2012, 26(8):150-152, 160(in Chinese).
[17] AL-LAMI K, COLOMBI P, D'ANTINO T. Influence of hygrothermal ageing on the mechanical properties of CFRP-concrete joints and of their components[J]. Composite Structures, 2020, 238:111947.
[18] 于远亮. 基于性能退化的长寿命产品可靠性建模与分析[D]. 长沙:国防科学技术大学, 2014. YU Y L. Long life product's reliability modeling and analysis based on performance degradation[D]. Changsha:National University of Defense Technology, 2014(in Chinese).
[19] 肇研, 梁朝虎. 聚合物基复合材料自然老化寿命预测方法[J]. 航空材料学报, 2001, 21(2):55-58. ZHAO Y, LIANG Z H. The estimating method of atmospheric aging age on polymer matrix composites[J]. Journal of Aeronautical Materials, 2001, 21(2):55-58(in Chinese).
[20] 刘治国, 贾明明, 王晓刚, 等. 某型复合材料加速腐蚀与大气腐蚀当量关系分析[J]. 装备环境工程, 2018, 15(1):66-69. LIU Z G, JIA M M, WANG X G, et al. Equivalent relation between accelerated corrosion and atmospheric corrosion of composite material[J]. Equipment Environmental Engineering, 2018, 15(1):66-69(in Chinese).
[21] 刘旭, 陈跃良, 霍武军, 等. 碳纤维复合材料湿热老化加速关系[J]. 南京航空航天大学学报, 2014, 46(3):382-388. LIU X, CHEN Y L, HUO W J, et al. Accelerated relationship of hygrothermal aging for carbon fiber/polymer composites[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3):382-388(in Chinese).
Outlines

/