Special Topic of Aerodynamic Design of Advanced Space Transportation Sytem

Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle

  • JIA Hongyin ,
  • ZHANG Peihong ,
  • ZHAO Wei ,
  • ZHOU Guiyu ,
  • WU Xiaojun
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-03-21

  Revised date: 2020-07-13

  Online published: 2020-08-03

Supported by

National Numerical Wind tunnel Projetct; National Key R&D Technology Project(18-H863-03-ZT-001)

Abstract

The vertical recovery reusable launch vehicle is an important direction in the development of launch vehicles. The vertical reentry process with a large slenderness ratio is a typical irregular flow around the blunt body, with aerodynamic characteristics significantly different from those of traditional low drag streamline body vehicles. In this paper, the basic aerodynamic characteristics of the vertical recovery configuration and the flow around the irregular blunt body based on the grid fins were studied by means of wind tunnel tests and numerical simulation analyses. The influence quantities of the exposed nozzles and grid fins on the vertical recovery aerodynamic characteristics of the rocket sub-stage were obtained, and the vertical recovery layout design suggestions were given. The results indicate that the shoulder region will generate large separation flow at a small angle of attack when the rocket sub-stage reenters into the air. A strong separation vortex structure will be induced on the left and right sides of the nozzles, which will interact with the tail of the rocket and the large separation flow produced by the shoulder. The resistance of the vertical recovery configuration will always be at a high level with the supersonic speed, and the movement of the pressure center will be large with different Mach numbers. The exposed nozzle of the rocket engine will produce a large disturbing static instability moment when flying backward, with its magnitude basically the same as the static stability control moment provided by the gird fins. Attention should be paid to the design of the vertical recovery scheme of the rocket sub-stage.

Cite this article

JIA Hongyin , ZHANG Peihong , ZHAO Wei , ZHOU Guiyu , WU Xiaojun . Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(2) : 623995 -623995 . DOI: 10.7527/S1000-6893.2020.23995

References

[1] 吴燕生. 中国航天运输系统的发展与未来[J]. 导弹与航天运载技术, 2007(5):1-4. WU Y S. Development and future of space transportation system of China[J]. Missile and Space Vehcile, 2007(5):1-4(in Chinese).
[2] 汪小卫, 张普卓, 吴胜宝, 等. 运载火箭子级回收技术研究[J]. 航天返回与遥感, 2016(3):19-28. WANG X W, ZHANG P Z, WU S B, et al. Recovery technology of launch vehicle stage[J]. Spacecraft Recovery & Remote Sensing, 2016(3):19-28(in Chinese).
[3] 陈书钊, 楚龙飞, 杨秀梅, 等. 状态预测神经网络控制应用于小型可回收火箭[J]. 航空学报, 2019, 40(3):322286. CHEN S Z, CHU L F, YANG X M, et al. Application of state prediction neural network control algorithm in small reusable rocket[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322286(in Chinese).
[4] 冯韶伟, 马忠辉, 吴义田, 等. 国外运载火箭可重复使用关键技术综述[J]. 导弹与航天运载技术, 2014(5):82-86. FENG S W, MA Z H, WU Y T, et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missile and Space Vehcile, 2014(5):82-86(in Chinese).
[5] THOMAS J H, VANESSA V A, SHANN J R, et al. Advancing supersonic retropropulsion technology readiness:Infrared observations of the SpaceX Falcon 9 first stage[C]//2017 AIAA SPACE Forum. Reston:AIAA, 2017.
[6] 田继超, 宋强, 洪刚, 等. 常规运载火箭解决落区安全问题的方法[J]. 航空学报, 2018, 39(S1):722302. TIAN J C, SONG Q, HONG G, et al. Solutions for impact zone safety issue of conventional rockets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1):722302(in Chinese).
[7] 徐明兴, 贾洪印, 陈功, 等. 基于栅格舵的火箭芯一级残骸落点控制问题研究[J]. 飞行力学, 2019, 37(4):68-72. XU M X, JIA H Y, CHEN G, et al. Research on impact point control of the grid rudder based rocket core first stage[J]. Flight Dynamics, 2019, 37(4):68-72(in Chinese).
[8] 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特性分析[J].航空学报, 2015, 36(1):58-85. WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese).
[9] 袁先旭, 陈坚强, 王文正. 平头增阻再入体俯仰动态特性计算与流动机理分析[J]. 空气动力学学报, 2007, 25(3):300-305. YUAN X X, CHEN J Q, WANG W Z. Pitching dynamic stability computation for plane nose reentry vehicle and flow mechanism analysis[J]. Acta Aerodynamica Sinica, 2007, 25(3):300-305(in Chinese).
[10] 李津, 朱自强, 吴宗成, 等. 大钝头短体跨声速大迎角不同流型的计算比较[J]. 航空学报, 2002, 23(4):327-329. LI J, ZHU Z Q, WU Z C, et al. Comparison of computational results of the flow around a blunt nosed and short body at large angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4):327-329(in Chinese).
[11] 方方, 田园, 赵攀, 等. 空间返回航天器气动外形设计与需求分析[J]. 空气动力学学报, 2018, 36(5):816-825. FANG F, TIAN Y, ZHAO P, et al. Aerodynamic shape designs and requirement analysis of re-entry spacecraft[J]. Acta Aerodynamica Sinica, 2018, 36(5):816-825(in Chinese).
[12] 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8):022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):022792(in Chinese).
[13] TOBIAS E, SEBASTIAN K, ETIENNE D, et al. A numerical study on the thermal loads during a supersonic rocket retro-propulsion maneuver[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2017.
[14] STAPPERT S, DUMONT E. Reusability of launcher vehicles by the method of SpaceX[R]. 2016.
[15] 贾洪印, 徐明兴, 张培红, 等. 栅格翼在减小火箭残骸落点散布上的应用[J]. 航天返回与遥感, 2018, 39(6):21-29. JIA H Y, XU M X, ZHANG P H, et al. Application research of grid fin on reducing the falling point distribution for the debris of rocket[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(6):21-29(in Chinese).
[16] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with mflow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[17] GONG X Q, CHEN J T, ZHOU N C, et al. The effects of turbulence model correction on drag prediction of NASA Common Research Model:AIAA-2014-3171[R]. Reston:AIAA, 2014.
[18] FLRIAN R. MENTER. Improved two-equation k-ω turbulence model for aerodynamic flow:NASA TM103975[R]. Washington, D.C.:NASA,1992.
[19] THEERTHAMALAI P. Effect of geometric parameters on the aerodynamic characteristics of grid-fin cells at supersonic speeds:AIAA-2007-690[R]. Reston:AIAA, 2007.
[20] 方方, 周璐, 李志辉. 航天器返回地球的气动特性综述[J]. 航空学报, 2015, 36(1):24-38. FANG F, ZHOU L, LI Z H. A comprehensive analysis of aerodynamics for spacecraft re-entery Earth's atmosphere surroundings[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):24-38(in Chinese).
Outlines

/