Review

Research progress in robotic grinding technology for complex blades

  • ZHU Dahu ,
  • XU Xiaohu ,
  • JIANG Cheng ,
  • LI Wenlong
Expand
  • 1. School of Automotive Engineering, Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China;
    2. School of Mechanical Science and Engineering, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2020-05-22

  Revised date: 2020-06-22

  Online published: 2020-07-27

Supported by

National Natural Science Foundation of China (51975443,51535004,51675394)

Abstract

Aiming at the major demand for high efficiency and high quality machining of complex blades in national strategic fields such as aviation, aerospace, and energy, this paper reviews the recent advances in the robotic grinding technology using industrial robots as actuators. Specifically, studies in key process technologies from the four aspects of precise calibration of the machining system, efficient matching of the measured point cloud, adaptive planning of the machining trajectory, and precise control of the compliance force are systematically and comprehensively analyzed. Taking the typical steam turbine blades and engine blades as examples, we describe the application effects of the robotic grinding of blades. Finally, the future research directions in this field are prospected from four aspects:integrated machining of special parts of blades, chatter suppression of robotic grinding, surface integrity control, and hybrid additive and subtractive machining of blades.

Cite this article

ZHU Dahu , XU Xiaohu , JIANG Cheng , LI Wenlong . Research progress in robotic grinding technology for complex blades[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524265 -524265 . DOI: 10.7527/S1000-6893.2020.24265

References

[1] WANG H, ZHU D, LIU J. Improving the accuracy of the blade leading/trailing edges by electrochemical machining with tangential feeding[J].CIRP Annals, 2019, 68(1):165-168.
[2] DUAN J H, ZHANG Y M, SHI Y Y. Belt grinding process with force control system for blade of aero-engine[J].Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2016, 230(5):858-869.
[3] ZHAO P B, SHI Y Y. Posture adaptive control of the flexible grinding head for blisk manufacturing[J].The International Journal of Advanced Manufacturing Technology, 2014, 70(9-12):1989-2001.
[4] ZHAO P B, SHI Y Y. Composite adaptive control of belt polishing force for aero-engine blade[J].Chinese Journal of Mechanical Engineering, 2013, 26(5):988-996.
[5] ZHAO T, SHI Y Y, LIN X J, et al. Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine[J].The International Journal of Advanced Manufacturing Technology, 2014, 74(5-8):653-663.
[6] ZHANG J F, SHI Y Y, LIN X J, et al. Five-axis abrasive belt flap wheel polishing method for leading and trailing edges of aero-engine blade[J].The International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):3383-3393.
[7] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J].The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484.
[8] WANG Y J, HUANG Y, CHEN Y X, et al. Model of an abrasive belt grinding surface removal contour and its application[J].The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):2113-2122.
[9] XIAO G J, HUANG Y, YIN J C. An integrated polishing method for compressor blade surfaces[J].The International Journal of Advanced Manufacturing Technology, 2016, 88(5-8):1723-1733.
[10] HUANG Y, XIAO G J, LIU Y, et al. Interactive strategy for adaptive belt grinding heterogeneous data for an aero-engine blade[J].IEEE Access, 2019, 7:84637-84648.
[11] MENG F J, LI X, CHEN Z T, et al. Study on the cantilever grinding process of aero-engine blade[J].Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2014, 228(1):1393-1400.
[12] 陈志同, 易鹏, 朱正清, 等. 具有误差修正功能的叶片变预压量抛光技术[J].航空制造技术, 2018, 61(17):80-84,92. CHEN Z T, YI P, ZHU Z Q, et al. New aero-engine blade polishing technology available to correct machining errors through presetting wheel contact deformation[J].Aeronautical Manufacturing Technology, 2018, 61(17):80-84,92(in Chinese).
[13] 陈志同, 张云, 刘瑞松, 等航空发动机叶片矩形阵列磨削加工技术[J].航空制造技术, 2018, 61(9):34-39. CHEN Z T, ZHANG Y, LIU R S, et al. Rectangular array grinding process of aero-engine blade with complex surface[J].Aeronautical Manufacturing Technology, 2018, 61(9):34-39(in Chinese).
[14] 陈志同, 朱炳, 张云, 等整体叶盘超硬磨料砂轮数控磨削加工技术[J].航空制造技术, 2018, 61(19):64-72. CHEN Z T, ZHU B, ZHANG Y, et al. CNC grinding technology with super-abrasive grinding wheels for blisk[J].Aeronautical Manufacturing Technology, 2018, 61(9):64-72(in Chinese).
[15] XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J].The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1697-1706.
[16] LV Y J, PENG Z, QU C, et al. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model[J].Robotics and Computer-Integrated Manufacturing, 2020, 66:101987.
[17] 陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J].中国科学:技术科学, 2018, 48(12):1302-1312. TAO B, ZHAO X W, DING H. Study on robotic mobile machining techniques for large complex components[J].SCIENTIA SINICA Technologica, 2018, 48(12):1302-1312(in Chinese).
[18] VERL A, VALENTE A, MELKOTE S, et al. Robots in machining[J].CIRP Annals, 2019, 68(2):799-822.
[19] DING H, YANG X J, ZHENG N N, et al. Tri-Co Robot:a Chinese robotic research initiative for enhanced robot interaction capabilities[J].National Science Review, 2018, 5(6):799-801.
[20] WANG W, YUN C. A path planning method for robotic belt surface grinding[J].Chinese Journal of Aeronautics, 2011, 24(4):520-526.
[21] 张海洋. 叶片砂带磨削机器人轨迹规划与离线编程[D]. 武汉:华中科技大学, 2014. ZHANG H Y. Robotic trajectory planning and off-line programming for belt grinding of turbine blade[D]. Wuhan:Huazhong University of Science and Technology, 2014(in Chinese).
[22] LI W L, XIE H, ZHANG G, et al. 3-D shape matching of a blade surface in robotic grinding applications[J].IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2294-2306.
[23] WANG G, LI W L, RAO F, et al. Multi-parameter optimization of machining impeller surface based on the on-machine measuring technique[J].Chinese Journal of Aeronautics, 2019, 32(8):2000-2008.
[24] CHEN F, ZHAO H, LI D W, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector[J].Robotics and Computer-Integrated Manufacturing, 2019, 57:391-403.
[25] CHEN F, ZHAO H, LI D W, et al. Robotic grinding of a blisk with two degrees of freedom contact force control[J].The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4):461-474.
[26] WANG J W, XU J J, WANG X F, et al. A comprehensive study on surface integrity of nickel-based superalloy Inconel 718 under robotic belt grinding[J].Materials and Manufacturing Processes, 2018, 34(1):61-69.
[27] ZHANG X Q, CHEN H B, XU J J, et al. A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine[J].Journal of Materials Processing Technology, 2018, 260:9-19.
[28] GAO K Y, CHEN H B, ZHANG X Q, et al. A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718[J].The International Journal of Advanced Manufacturing Technology, 2019, 105(1):217-232.
[29] WANG X F, ZHANG X Q, REN X K, et al. Point cloud 3D parent surface reconstruction and weld seam feature extraction for robotic grinding path planning[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2):827-841.
[30] QI J D, ZHANG D H, LI S, et al. Modeling of the working accuracy for robotic belt grinding system for turbine blades[J].Advances in Mechanical Engineering, 2017, 9(6):1-12.
[31] GUO J, SHI Y Y, CHEN Z, et al. Optimal parameter selection in robotic belt polishing for aeroengine blade based on GRA-RSM method[J].Symmetry-Basel, 2019, 11(12):1-12.
[32] ZHAN J M, ZHAO J, XU S X, et al. Study of the contact force in free-form-surfaces compliant EDM polishing by robot[J].Journal of Materials Processing Technology, 2002, 129(1):186-189.
[33] 赵扬. 机器人磨削叶片关键技术研究[D]. 长春:吉林大学, 2009. ZHAO Y. Research on key technology of robotic blade grinding[D]. Changchun:Jilin University, 2009(in Chinese).
[34] LIU J, ZHAO J, YANG X, et al. A tangential approximation algorithm for measured data reduction of blade section curves[J].Measurement, 2018, 128:504-515.
[35] 王伟, 贠超, 张令. 机器人砂带磨削的曲面路径优化算法[J].机械工程学报, 2011, 47(7):8-15. WANG W, YUN C, ZHANG L. Optimization algorithm for robotic belt surface grinding process[J].Journal of Mechanical Engineering, 2011, 47(7):8-15(in Chinese).
[36] GAO Z H, LAN X D, BIAN Y S. Structural dimension optimization of robotic belt grinding system for grinding workpieces with complex shaped surfaces based on dexterity grinding space[J].Chinese Journal of Aeronautics, 2011, 24(3):346-354.
[37] WANG W, LIU F, LIU Z H, et al. Prediction of depth of cut for robotic belt grinding[J].The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):699-708.
[38] ZHANG H Y, LI L, ZHAO J B. Robot automation grinding process for nuclear reactor coolant pump based on reverse engineering[J].The International Journal of Advanced Manufacturing Technology, 2019, 102:879-891.
[39] ZHANG H Y, LI L, ZHAO J B, et al. Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(3-4):1741-1754.
[40] CHEN S Y, ZHANG T, SHAO M. Interpolation optimization for robotic grinding with velocity constraints[J].Advances in Mechanical Engineering, 2017, 9(12):1-16.
[41] ZHANG T, LIANG X H, YU Y, et al. A method for obtaining optimal path in angle and avoiding collision for robotic belt grinding[J].Mathenatical Problems in Engineering, 2019, 2019:1-19.
[42] ZHANG T, XIAO M, ZOU Y B, et al. Robotic constant-force grinding control with a press-and-release model and model-based reinforcement learning[J].The International Journal of Advanced Manufacturing Technology, 2020, 106(1-2):589-602.
[43] ZHU D H, XU X H, YANG Z Y, et al. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments[J].Tribology International, 2018, 120:93-98.
[44] ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components:A step towards efficient and intelligent machining -challenges, solutions, and applications[J].Robotics and Computer-Integrated Manufacturing, 2020, 6:101908.
[45] 黄云, 肖贵坚, 邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J].航空学报, 2019, 40(3):022508. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of robot precise belt grinding for aero-engine blade[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(3):022508(in Chinese).
[46] CARLSON F B, JOHANSSON R, ROBERTSSON A. Six DOF eye-to-hand calibration from 2D measurements using planar constraints[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015:3628-3632.
[47] 张宗郁, 高洪明, 韩庆璘, 等. 飞机导管机器人焊接手眼关系标定[J].上海交通大学学报, 2015, 49(3):392-394,401. ZHANG Z Y, GAO H M, HAN Q L, et al. Hand-eye calibration in robot welding of aero tube[J].Journal of Shanghai Jiaotong University, 2015, 49(3):392-394,401(in Chinese).
[48] 张铁, 叶景杨, 刘晓刚. 面向机器人砂带打磨的加权手眼标定算法[J].机械工程学报, 2018, 54(17):142-148. ZHANG T, YU J Y, LIU X G. Weighted hand-eye calibration algorithm for robot grinding[J].Journal of Mechanical Engineering, 2018, 54(17):142-148(in Chinese).
[49] LI W L, XIE H, ZHANG G, et al. Hand-eye calibration in visually-guided robot grinding[J].IEEE Transactions on Cybernetics, 2016, 46(11):2634-2642.
[50] XU X H, ZHU D H, ZHANG H Y, et al. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements[J].The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):635-647.
[51] CHEN W Y, DU J, XIONG W, et al. A noise-tolerant algorithm for robot-sensor calibration using a planar disk of arbitrary 3-D orientation[J].IEEE Transactions on Automation Science and Engineering, 2018, 15(1):251-263.
[52] LEE K H, KIM H S, LEE S J, et al. High precision hand-eye self-calibration for industrial robots[C]//International Conference on Electronics, Information, and Communication (ICEIC), 2018:1-2.
[53] 彭真. 基于特征匹配的叶片机器人磨抛系统标定技术及应用软件开发[D]. 武汉:武汉理工大学, 2020. PENG Z. Feature matching based calibration technology of robotic blade grinding system and application software delevopment[D]. Wuhan:Wuhan University of Technology, 2020(in Chinese).
[54] 李勇华. 叶片机器人磨抛软件系统关键技术开发与集成[D]. 武汉:华中科技大学, 2015. LI Y H. Development and integration of key technologies of the blade robotic belt-grinding software[D]. Wuhan:Huazhong University of Science and Technology, 2015(in Chinese).
[55] XU X H, ZHU D H, WANG J S, et al. Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere[J].Robotics and Computer-Integrated Manufacturing, 2018, 51:189-201.
[56] 宋月娥, 吴林, 田劲松, 等. 用于机器人离线编程的工件标定算法研究[J].哈尔滨工业大学学报, 2002, 34(6):735-738. SONG Y E, WU L, TIAN J S, et al. Part calibration algorithm used for robotic off-line programming[J].Journal of Harbin Institute of Technology, 2002, 34(6):735-738(in Chinese).
[57] SUN Y Q, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J].Robotics and Computer-Integrated Manufacturing, 2009, 25(1):204-210.
[58] LEALI F, PELLICCIARI M, PINI F, et al. A calibration method for the integrated design of finishing robotic workcells in the aerospace industry[J].Communications in Computer and Information Science, 2013, 371:37-48.
[59] 张文增, 陈强, 孙振国, 等. 弧焊机器人工件坐标系快速标定方法[J].焊接学报, 2005, 26(7):1-4. ZHANG W Z, CHEN Q, SUN Z G, et al. Fast calibration method for workpiece coordinate system of arc welding robot[J].Transactions of the China Welding Institution, 2005, 26(7):1-4(in Chinese).
[60] 陈巍, 严思杰, 张家军, 等. 叶片机器人砂带磨抛点云匹配算法优化[J].机电工程, 2014, 31(6):711-715. CHEN W, YAN S J, ZHANG J J, et al. Optimization of point cloud registration algorithm in robotic belt grinding of turbine blade[J].Journal of Mechanical & Electrical Engineering, 2014, 31(6):711-715(in Chinese).
[61] 陈巍. 点云匹配技术在机器人砂带磨削系统中的应用研究[D]. 武汉:华中科技大学, 2014. CHEN W. The application research of point registration in the robotic belt grinding system[D]. Wuhan:Huazhong University of Science and Technology, 2014(in Chinese).
[62] 胡晨晨. 激光位移传感器位置标定技术及其在机器人磨抛加工中的应用[D]. 武汉:华中科技大学, 2017. HU C C. Position calibration for laser displacement sensor with its application in robot polishing[D]. Wuhan:Huazhong University of Science and Technology, 2017(in Chinese).
[63] 彭真, 吕远健, 渠超, 等. 基于关键点提取与优化迭代最近点的点云配准[J].激光与光电子学进展, 2020, 57(6):061002. PENG Z, LV Y J, QU C, et al. Accurate registration of 3D point clouds based on keypoint extraction and improved iterative closest point algorithm[J].Laser & Optoelectronics Progress, 2020, 57(6):061002(in Chinese).
[64] HU G, PENG Q, FORREST A R. Mean shift denoising of point-sampled surfaces[J].The Visual Computer, 2006, 22(3):147-157.
[65] 张鑫, 王章野, 范涵奇, 等. 保特征的三维模型的三边滤波去噪算法[J].计算机辅助设计与图形学学报, 2009, 21(7):936-942. ZHANG X, WANG Z Y, FAN H Q, et al. A feature preserving denoising approach for scanned models based on trilateral filtering[J].Journal of Computer-Aided Design & Computer Graphics, 2009, 21(7):936-942(in Chinese).
[66] MOGHARI M H, ABOLMAESUMI P. Point-based rigid-body registration using an unscented Kalman filter[J].IEEE Transactions on Medical Imaging, 2007, 26(12):1708-1728.
[67] MIAO Y W, PAJAROLA R, FENG J Q. Curvature-aware adaptive re-sampling for point-sampled geometry[J].Computer-Aided Design, 2009, 41(6):395-403.
[68] SONG H, FENG H Y. A progressive point cloud simplification algorithm with preserved sharp edge data[J].The International Journal of Advanced Manufacturing Technology, 2009, 45(5-6):583-592.
[69] ZHANG X M, WAN W G, AN X D. Clustering and DCT based color point cloud compression[J].Journal of Signal Processing Systems, 2017, 86(1):41-49.
[70] HAN X F, JIN J S, WANG M J, et al. A review of algorithms for filtering the 3D point cloud[J].Signal Processing:Image Communication, 2017, 57:103-112.
[71] JIA C, YANG T, WANG C, et al. A new fast filtering algorithm for a 3D point cloud based on RGB-D information[J].PLoS One, 2019, 14(8):e0220253.
[72] HU Q Y, YANG B, XIE L H, et al. RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the Computer Vision and Pattern Recognition (CVPR). 2019.
[73] DINESH C, CHEUNG G, BAJIC I V. Point cloud denoising via feature graph Laplacian regularization[J].IEEE Transactions on Image Processing, 2020, 29:4143-4158.
[74] 李启东, 李文龙, 周莉萍. 一种曲面特征保持的航空叶片点云精简方法[J].中国机械工程, 2014, 25(16):2204-2212. LI Q D, LI W L, ZHOU L P. Surface feature-preserving point cloud simplification method for aviation blades[J].China Mechanical Engineering, 2014, 25(16):2204-2212(in Chinese).
[75] LI W L, ZHOU L P, YAN S J. A case study of blade inspection based on optical scanning method[J].International Journal of Production Research, 2014, 53(7):2165-2178.
[76] LI W L, XIE H, ZHANG G, et al. Adaptive bilateral smoothing for a point-sampled blade surface[J].IEEE/ASME Transactions on Mechatronics, 2016, 21(6):2805-2816.
[77] 李文龙, 李中伟, 毛金城. iPoint3D曲面检测软件开发与工程应用综述[J].机械工程学报, 2020, 26(7):127-150. LI W L, LI Z W, MAO J C. The development and application review of iPoint3D software for surface inspection[J].Journal of Mecanical Engineering, 2020, 26(7):127-150(in Chinese).
[78] LI W M, SONG P F. A modified ICP algorithm based on dynamic adjustment factor for registration of point cloud and CAD model[J].Pattern Recognition Letters, 2015, 65:88-94.
[79] MAVRIDIS P, ANDREADIS A, PAPAIOANNOU G. Efficient sparse ICP[J].Computer Aided Geometric Design, 2015, 35:16-26.
[80] YANG J L, LI H D, JIA Y D. Go-ICP:solving 3D registration efficiently and globally optimally[C]//The IEEE International Conference on Computer Vision (ICCV). 2013:1457-1464.
[81] 李文龙, 谢核, 尹周平, 等. 基于方差最小化原理的三维匹配数学建模与误差分析[J].机械工程学报, 2017, 53(16):190-198. LI W L, XIE H, YIN Z P, et al. Mathematical modeling and error analysis of 3D matching based on variance minimization principle[J].Journal of Mechanical Engineering, 2017, 53(16):190-198(in Chinese).
[82] XIE H, LI W L, YIN Z P, et al. Variance-minimization iterative matching method for free-form surfaces-Part I:theory and method[J].IEEE Transactions on Automation Science and Engineering, 2019, 16(3):1181-1191.
[83] XIE H, LI W L, YIN Z P, et al. Variance-minimization iterative matching method for free-form surfaces-Part II:experiment and analysis[J].IEEE Transactions on Automation Science and Engineering, 2019, 16(3):1192-1204.
[84] 蔺小军, 杨艳, 吴广, 等面向叶片型面的五轴联动柔性数控砂带抛光技术[J].航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese).
[85] YANG J H, ZHANG D H, WU B H, et al. A path planning method for error region grinding of aero-engine blades with free-form surface[J].The International Journal of Advanced Manufacturing Technology, 2015, 81(1-4):717-728.
[86] WANG J T, ZHANG D H, WU B H, et al. Kinematic analysis and feedrate optimization in six-axis NC abrasive belt grinding of blades[J].The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4):405-414.
[87] HUANG Z, SONG R, WAN C B, et al. Trajectory planning of abrasive belt grinding for aero-engine blade profile[J].The International Journal of Advanced Manufacturing Technology, 2019, 102:405-514.
[88] HUANG H, GONG Z M, CHEN X, et al. Robotic grinding and polishing for turbine-vane overhaul[J].Journal of Materials Processing Technology, 2002, 127:140-145.
[89] CHAVES-JACOB J, LINARES J M, SPRAUEL J M. Improving tool wear and surface covering in polishing via toolpath optimization[J].Journal of Materials Processing Technology, 2013, 213(10):1661-1668.
[90] LIU H S, LAI X B, WU W X. Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints[J].Robotics and Computer-Integrated Manufacturing, 2013, 29(2):309-317.
[91] ZHOU P, ZHAO X W, TAO B, et al. Time-varying isobaric surface reconstruction and path planning for robotic grinding of weak-stiffness workpieces[J].Robotics and Computer-Integrated Manufacturing, 2020, 64:101945.
[92] MA K W, HAN L, SUN X X, et al. A path planning method of robotic belt grinding for workpieces with complex surfaces[J].IEEE/ASME Transactions on Mechatronics, 2020, 25(2):728-738.
[93] CHEN Y H, DONG F H. Robot machining:recent development and future research issues[J].The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1489-1497.
[94] ZHAO Y, ZHAO J, ZHANG L, et al. Path planning for automatic robotic blade grinding[C]//Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. 2009:1556-1560.
[95] ZAGHBANI I, SONGMENE V, BONEV I. An experimental study on the vibration response of a robotic machining system[J].Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2013, 227(6):866-880.
[96] DU H P, SUN Y W, FENG D Y, et al. Automatic robotic polishing on titanium alloy parts with compliant force/position control[J].Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2015, 229(7):1180-1192.
[97] DONG Y F, REN T Y, HU K, et al. Contact force detection and control for robotic polishing based on joint torque sensors[J].The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6):2745-2756.
[98] GIERLAK P, SZUSTER M. Adaptive position/force control for robot manipulator in contact with a flexible environment[J].Robotics and Autonomous Systems, 2017, 95:80-101.
[99] LATIFINAVID M, DONDER A, KONUKSEVEN E I. High-performance parallel hexapod-robotic light abrasive grinding using real-time tool deflection compensation and constant resultant force control[J].The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12):3403-3416.
[100] DUAN J J, GAN Y H, CHEN M, et al. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment[J].Robotics and Autonomous Systems, 2018, 102:54-65.
[101] CHAUDHARY H, PANWAR V, PRASAD R, et al. Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator[J].Journal of Intelligent Manufacturing, 2016, 27(6):1299-1308.
[102] KONG X D, BA K X, YU B, et al. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system[J].Chinese Journal of Mechanical Engineering (English Edition), 2016, 29(3):454-464.
[103] CHEN S Y, ZHANG T, ZOU Y B. Fuzzy-sliding mode force control research on robotic machining[J].Journal of Robotics, 2017, 1:1-8.
[104] KHALICK MOHAMMAD A E, HONG J, WANG D. Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm[J].The International Journal of Advanced Manufacturing Technology, 2017, 93(1-4):1463-1471.
[105] LEE K H, NEWMAN W S. Natural admittance control of an electro-hydraulic humanoid robot[C]//Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics. 2014:1100-1105.
[106] XU X H, ZHU D H, ZHANG H Y, et al. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J].Chinese Journal of Aeronautics, 2019, 32(10):2368-2382.
[107] ZHAO X W, TAO B, QIAN L, et al. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces[J].Robotics and Computer-Integrated Manufacturing, 2020, 63:101889.
[108] ZHANG J F, LIU G F, ZANG X Z, et al. A hybrid passive/active force control scheme for robotic belt grinding system[C]//Proceedings of the 13th IEEE International Conference on Mechatronics and Automation. 2016:737-742.
[109] ZHOU P K, ZHOU Y M, XIE Q L, et al. Adaptive force control for robotic grinding of complex blades[J].IOP Conference Series:Materials Science and Engineering, 2019, 692:012008.
[110] 梁秀权. 复杂曲面全数字式力控磨抛技术研究[D]. 武汉:华中科技大学, 2019. LIANG X Q. Digital force controlled grinding and polishing technology for complex surfaces[D]. Wuhan:Huazhong University of Science and Technology, 2019(in Chinese).
[111] 刘树生. 航空钛合金叶片数控砂带磨削关键技术[J].航空制造技术, 2011(4):34-38. LIU S S. Key technology of NC abrasive belt grinding for titanium blade[J].Aeronautical Manufacturing Technology, 2011(4):34-38.
[112] WHITNEY D E. Resolved motion rate control of manipulators and human prostheses[J].IEEE Transactions on Man-Machine Systems, 1969, 10(2):47-53.
[113] LIN W Y, YUAN L T, DONG W B, et al. Impedance control based analysis of compliant flange[C]//Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation. 2017:1222-1227.
[114] 赵源. 螺旋桨磨削机器人的末端执行器设计与接触力控制研究[D]. 武汉:华中科技大学, 2015. ZHAO Y. End-effector design and contact force control in robotic grinding process of controllable pitch propeller[D]. Wuhan:Huazhong University of Science and Technology, 2015(in Chinese).
[115] 徐小虎. 压气机叶片机器人砂带磨抛加工关键技术研究[D]. 武汉:华中科技大学, 2019. XU X H. Research on the key technology of robotic abrasive belt grinding of compressor blade[D]. Wuhan:Huazhong University of Science and Technology, 2019(in Chinese).
[116] MOUSAVI S, GAGNOL V, BOUZGARROU B C, et al. Stability optimization in robotic milling through the control of functional redundancies[J].Robotics and Computer-Integrated Manufacturing, 2018, 50:181-192.
[117] CORDES M, HINTZE W, ALTINTAS Y. Chatter stability in robotic milling[J].Robotics and Computer-Integrated Manufacturing, 2019, 55:11-18.
[118] HUYNH H N, ASSADI H, RIVIèRE-LORPHèVRE E, et al. Modelling the dynamics of industrial robots for milling operations[J].Robotics and Computer-Integrated Manufacturing, 2020, 61:101852.
[119] YUAN L, PAN Z X, DING D H, et al. A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism[J].IEEE/ASME Transactions on Mechatronics, 2018, 23(5):2240-2251.
[120] XU X H, CHU Y, ZHU D H, et al. Experimental investigation and modeling of material removal characteristics in robotic belt grinding considering the effects of cut-in and cut-off[J].The International Journal of Advanced Manufacturing Technology, 2019, 106(3-4):1161-1177.
[121] YAN S J, XU X H, YANG Z Y, et al. An improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-off[J].Journal of Manufacturing Processes, 2019, 37:496-508.
[122] TIAN F J, LV C, LI Z G, et al. Modeling and control of robotic automatic polishing for curved surfaces[J].CIRP Journal of Manufacturing Science and Technology, 2016, 14:55-64.
[123] WU S H, KAZEROUNIAN K, GAN Z X, et al. A material removal model for robotic belt grinding process[J].Machining Science and Technology, 2014, 18(1):15-30.
[124] YANG Z Y, XU X H, ZHU D H, et al. On energetic evaluation of robotic belt grinding mechanisms based on single spherical abrasive grain model[J].The International Journal of Advanced Manufacturing Technology, 2019, 104(9-12):4539-4548.
[125] TAHVILIAN A M, LIU Z, CHAMPLIAUD H, et al. Experimental and finite element analysis of temperature and energy partition to the workpiece while grinding with a flexible robot[J].Journal of Materials Processing Technology, 2013, 213(12):2292-2303.
[126] CHEN J Q, CHEN H B, XU J J, et al. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm[J].The International Journal of Advanced Manufacturing Technology, 2018, 98(1-4):859-872.
[127] PANDIYAN V, TJAHJOWIDODO T. Use of Acoustic Emissions to detect change in contact mechanisms caused by tool wear in abrasive belt grinding process[J].Wear, 2019, 436-437:203047.
[128] QU C, LV Y J, YANG Z Y, et al. An improved chip-thickness model for surface roughness prediction in robotic belt grinding considering the elastic state at contact wheel-workpiece interface[J].The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8):3209-3217.
[129] MOTTA J M S T, LLANOS-QUINTERO C H, CORAL SAMPAIO R. Inverse kinematics and model calibration optimization of a five-D.O.F. robot for repairing the surface profiles of hydraulic turbine blades[J].International Journal of Advanced Robotic Systems, 2016, 13(3):114.
Outlines

/