Review

Suspended micro-low gravity environment simulation technology: Status quo and prospect

  • GAO Haibo ,
  • NIU Fuliang ,
  • LIU Zhen ,
  • YU Haitao ,
  • LI Nan
Expand
  • State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China

Received date: 2020-02-28

  Revised date: 2020-04-11

  Online published: 2020-07-10

Supported by

"111" Project (B07018);Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51521003);National Natural Science Foundation of China(51975140)

Abstract

The micro-low gravity environment in aerospace causes different forced states and dynamic performance of the spacecraft and astronauts from those in the ground gravity environment; therefore, it is necessary to simulate this environment on the ground. Several commonly used micro-low gravity simulation methods are reviewed. Among them, the suspension method is widely used because of its advantages of long simulation time, large simulation range, and having no additional inertia. From the perspective of the system scheme principle, the research results of existing suspended micro-low gravity simulation systems at home and abroad are classified and reviewed. According to the requirements of micro-low gravity simulation, two design criteria and three key technologies of the suspension micro-low gravity simulation system are summarized. The research status of these three key technologies is reviewed in detail. The development trends of the system design and three key technologies of the future suspended micro-low gravity simulation are discussed.

Cite this article

GAO Haibo , NIU Fuliang , LIU Zhen , YU Haitao , LI Nan . Suspended micro-low gravity environment simulation technology: Status quo and prospect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523911 -523911 . DOI: 10.7527/S1000-6893.2020.23911

References

[1] BROWN H B, DOLAN J M. A novel gravity compensation system for space robots[C]//ASCE Specialty Conference on Robotics for Challenging Environments. Albuquerque:ASCE,1994:250-258.
[2] HARVILL L, COWLEY M, RAJULU S. Human performance in simulated reduced gravity environments:JSC-CN-32456[R]. Washington, D.C.:NASA, 2014.
[3] 刘巍, 张磊, 赵维. 载人低重力模拟技术现状与研究进展[J]. 航天医学与医学工程, 2012, 25(6):463-468. LIU W, ZHANG L, ZHAO W. Current situation and research progress of low gravity simulation[J]. Space Medicine & Medical Engineering, 2012, 25(6):463-468(in Chinese).
[4] 齐乃明, 张文辉, 高九州, 等. 空间微重力环境地面模拟试验方法综述[J]. 航天控制, 2011, 29(3):95-100. QI N M, ZHANG W H, GAO J Z, et al. The primary discussion for the ground simulation system of spatial microgravity[J]. Aerospace Control, 2011, 29(3):95-100(in Chinese).
[5] PYATIBRATOV G Y, KRAVCHENKO O A, KIVO A M. Design principles and implementation of advanced simulators for training astronauts to work in zero or low gravity conditions[J]. Procedia Engineering, 2016, 150:1410-1414.
[6] CHEN C I, CHEN Y T, WU S C, et al. Experiment and simulation in design of the board-level drop testing tower apparatus[J]. Experimental Techniques, 2012, 36(2):60-69.
[7] NICOLAU E, POVENTUD-ESTRADA C M, ARROYO L, et al. Microgravity effects on the electrochemical oxidation of ammonia:A parabolic flight experiment[J]. Electrochimica Acta, 2012, 75:88-93.
[8] MATSUZAWA T. Parabolic flight:Experiencing zero gravity to envisage the future of human evolution[M]. Heidelberg:Springer, 2018:1-3.
[9] SAWADA H, UI K, MORI M, et al. Micro-gravity experiment of a space robotic arm using parabolic flight[J]. Advanced Robotics, 2004, 18(3):247-267.
[10] PRINCE A. Neutral buoyancy laboratory capabilities:JSC-CN-38569[R]. Washington, D.C.:NASA, 2016.
[11] LAUGHLIN M S, MURRY J D, LEE L R, et al. Compiling a comprehensive EVA training dataset for NASA astronauts:JSC-CN-35336[R]. Washington, D.C.:NASA, 2016.
[12] 齐乃明, 张文辉, 高九州, 等. 三维空间微重力地面模拟试验系统设计[J]. 机械工程学报, 2011, 47(9):16-20. QI N M, ZHANG W H, GAO J Z, et al. Design of ground simulation test system for three-dimensional spatial microgravity environment[J]. Journal of Mechanical Engineering, 2011, 47(9):16-20(in Chinese).
[13] 齐乃明,张文辉,马静,等. 空间微重力地面模拟试验系统智能控制器设计[J]. 哈尔滨工业大学学报,2012, 44(1):17-21. QI N M, ZHANG W H, MA J, et al. Intelligent controller design of ground simulation test system for three-dimensional spatial microgravity environment[J]. Journal of Harbin Institute of Technology, 2012, 44(1):17-21(in Chinese).
[14] WYSOR R B. Preliminary design study of a lunar gravity simulator[EB/OL]. (1995-12-04)[2020-02-27]. https://ntrs.nasa.gov/search.jsp?R=19680036181.
[15] 刘振, 高海波, 邓宗全. 星球车地面低重力模拟系统设计[J]. 机器人, 2013, 35(6):750-756. LIU Z, GAO H B, DENG Z Q. Design of the low gravity simulation system for planetary rovers[J]. Robot, 2013, 35(6):750-756(in Chinese).
[16] SATO Y, EJIRI A, ⅡDA Y, et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//1991 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1991:1893-1900.
[17] VALLE P, DUNGAN L, CUNNINGHAM T, et al. Active response gravity offload system:MSC-24815-1/24-1[R]. Washington, D.C.:NASA, 2011.
[18] XIU W, RUBLE K, MA O. A reduced-gravity simulator for physically simulating human walking in microgravity or reduced-gravity environment[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2014:4837-4843.
[19] MA O, LU Q, MCAVOY J, et al. Concept study of a passive reduced-gravity simulator for training astronauts[C]//ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York:ASME, 2010:655-664.
[20] DE STEFANO M, BALACHANDRAN R, SECCHI C. A passivity-based approach for simulating satellite dynamics with robots:Discrete-time integration and time-delay compensation[J]. IEEE Transactions on Robotics, 2020, 36(1):189-203.
[21] AGHILI F. A robotic testbed for zero-g emulation of spacecraft[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2005:3654-3661.
[22] HEWES D E, LETKO W, SPADY A A. The problems of man's adaptation to the lunar environment:NASA-TM-X-57241[R]. Washington, D.C.:NASA,1966.
[23] LETKO W, SPADY A A. Walking in simulated lunar gravity[C]//Fourth Symposium on the Role of the Vestibular Organs in Space Exploration. Washington, D.C.:NASA, 1970:347-351.
[24] PERUSEK G P, DEWITT J K, CAVANAGH P R, et al. Zero-gravity locomotion simulators:New ground-based analogs for microgravity exercise simulation[EB/OL]. (2008-01-29)[2020-02-27]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080006841.pdf.
[25] TOTMAN C, PERUSEK G, GRODSINSKY C, et al. Ground-based simulations of ISS exercise countermeasures at NASA Glenn research center's exercise countermeasures laboratory:Compliant interface dynamics using a floating treadmill[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008.
[26] XU Y, BROWN H B, FRIEDMAN M, et al. Control system of the self-mobile space manipulator[J]. IEEE Transactions on Control Systems Technology, 1994, 2(3):207-219.
[27] XU Y, BROWN B, AOKI S, et al. Mobility and manipulation of a light-weight space robot[J]. Robotics and Autonomous Systems, 1994, 13(1):1-12.
[28] HE J P, KRAM R, MCMAHON T A. Mechanics of running under simulated low gravity[J]. Journal of Applied Physiology, 1991, 71(3):863-870.
[29] GRIFFIN T M, TOLANI N A, KRAM R. Walking in simulated reduced gravity:Mechanical energy fluctuations and exchange[J]. Journal of Applied Physiology, 1999, 86(1):383-390.
[30] KEMURDJIAN A, KHAKHANOV U A. Development of simulation means for a gravity forces[C]//Fourth International Conference and Exposition on Robotics for Challenging Situations and Environments, 2000:220-225.
[31] KIM M G, CHO S, TRAN T Q, et al. Scaled jump in gravity-reduced virtual environments[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4):1360-1368.
[32] FUJⅡ H, YONEOKA H, UCHIYAMA K. Experiments on cooperative motion of a space robot[C]//Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 1993:2155-2162.
[33] WYSOR R B, PAULNOCK R S, FARRIOR J S. Third interim report preliminary design study of a lunar gravity simulator[EB/OL]. (1966-10-25)[2020-02-27]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/1967-0022528.pdf.
[34] HAN O, KIENHOLZ D, JANZEN P, et al. Gravity-off-loading system for large-displacement ground testing of spacecraft mechanisms[EB/OL]. (2010-06-15)[2020-02-27]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100021948.pdf.
[35] NORCROSS J R, CHAPPELL S P, CLOWERS K G, et al. Characterization of partial-gravity analog environments for extravehicular activity suit testing:NASA-TM-2010-216139[R]. Washington, D.C.:NASA, 2010.
[36] VALLE P. Reduced gravity testing of robots (and humans) using the active response gravity offload system:JSC-CN-40487[R]. Washington, D.C.:NASA,2017.
[37] 刘荣强, 郭宏伟, 邓宗全. 空间索杆铰接式伸展臂设计与试验研究[J]. 宇航学报,2009, 30(1):315-320. LIU R Q, GUO H W, DENG Z Q. Space cable-strut deployable articutlated mast design and experimental study[J]. Journal of Astronautics, 2009, 30(1):315-320(in Chinese).
[38] 张浩月,从强,张从发,等. 一种适用于超长轻质结构展开的地面模拟零重力试验系统:ZL 111017274A[P]. 2020-04-17. ZHANG H Y, CONG Q, ZHANG C F, et al. A ground-based zero-gravity test system suitable for the deployment of ultra-long lightweight structures:ZL 111017274A[P]. 2020-04-17(in Chinese).
[39] 姚骏,吴远波,顾志悦,等. 一种零重力悬挂式展开试验装置:ZL102145755B[P]. 2013-03-27. YAO J, WU Y B, GU Z Y, et al. A zero-gravity suspension unfolding test device:ZL102145755B[P]. 2013-03-27(in Chinese).
[40] 侯玮杰,李鹏,李跃华,等. 一种一维悬吊式零重力模拟装置:ZL208731250U[P]. 2019-04-12. HOU W J, LI P, LI Y H, et al. An one-dimensional suspended zero-gravity simulation device:ZL208731250U[P]. 2019-04-12(in Chinese).
[41] 侯玮杰,李鹏,李跃华,等. 一种二维悬吊式零重力模拟装置:ZL208842647U[P]. 2019-05-10. HOU W J, LI P, LI Y H, et al. A two-dimensional suspended zero-gravity simulation device:ZL208842647U[P]. 2019-05-10(in Chinese).
[42] 宋晓东,田强,施建才,等. 一种磁气悬浮吊挂装置:ZL110697092A[P]. 2020-01-17. SONG X D, TIAN Q, SHI J C, et al. A magnetic gas suspension hanging device:ZL110697092A[P]. 2020-01-17(in Chinese).
[43] 严素欣,王盼,曹伟. 一种可拆卸组合式的空间展开结构地面试验装置:ZL111086661A[P]. 2020-05-01. YAN S X, WANG P, CAO W. A detachable and composable ground test device for space unfolding structure:ZL111086661A[P]. 2020-05-01(in Chinese).
[44] 阎绍泽,赵杰亮,吴嘉宁,等. 一种含谐波传动的空间机械臂模拟装置:ZL103979121B[P]. 2016-01-20. YAN S Z, ZHAO J L, WU J N, et al. A simulation device of space manipulator with harmonic drive:ZL103979121B[P]. 2016-01-20(in Chinese).
[45] 赵本华,张斌,白忠奕,等. 航天器舱门零重力环境模拟卸载系统设计分析[J].宇航总体技术,2019,3(4):21-27. ZHAO B H, ZHANG B, BAI Z Y, et al. Design and analysis of zero-gravity environment simulation unloading system for spacecraft hatch-door[J]. Astronautical Systems Engineering Technology,2019,3(4):21-27(in Chinese).
[46] 彭浩, 何柏岩. 星载环形天线重力补偿新方法[J]. 中国机械工程, 2019, 30(4):379-384. PENG H, HE B Y. A New gravity compensation method of space-borne perimeter truss deployable reflectors[J]. China Mechanical Engineering, 2019, 30(4):379-384(in Chinese).
[47] 王晓凯,崔琦峰,杜江华,等. 一种用于大位移多维展开结构的零重力无摩擦展开装置:ZL109118931A[P]. 2019-01-01. WANG X K, CUI Q F, DU J H, et al. A zero-gravity frictionless expansion device for large-displacement multi-dimensional expansion structure:ZL109118931A[P]. 2019-01-01(in Chinese).
[48] 赵乐乐,马海龙,李金柱,等. 多自由度卫星大型载荷微重力装配重力卸载装置:ZL104709476B[P]. 2017-01-18. ZHAO L L, MA H L, LI J Z, et al. Multi-degree-of-freedom satellite large load microgravity assembly gravity unloading device:ZL104709476B[P]. 2017-01-18(in Chinese).
[49] 高志慧,赵金琦,边宇枢,等. 一种适用于真空罐的卷筒式伸杆天线零重力补偿装置:ZL109383852A[P]. 2019-02-26. GAO Z H, ZHAO J Q, BIAN Y S, et al. A zero-gravity compensation device of reel-type stretching rod antenna suitable for vacuum tank:ZL109383852A[P]. 2019-02-26(in Chinese).
[50] 丁希仑,肖航,吕胜男. 一种用于柱面展开机构的零重力悬挂试验装置:ZL108535035B[P]. 2020-04-14. DING X L, XIAO H, LV S N. A zero-gravity suspension test device used for cylindrical surface unfolding mechanism:ZL108535035B[P]. 2020-04-14(in Chinese).
[51] 宋晓东,施建才,宣佳珺,等. 天线微重力模拟系统:ZL110758782A[P]. 2020-02-07. SONG X D, SHI J C, XUAN J J, et al. Antenna microgravity simulation system:ZL110758782A[P]. 2020-02-07(in Chinese).
[52] 戴跃洪,石三川,秦开宇,等. 一种模拟低重力环境下穿戴人员负载实验的装置:ZL109592084A[P]. 2019-04-09. DAI Y H, SHI S C, QIN K Y, et al. A device for simulating load experiment of wearer under low gravity environment:ZL109592084A[P]. 2019-04-09(in Chinese).
[53] 诸成,郭彤,李晓莉,等. 分离机构微重力试验系统:ZL108760267A[P]. 2018-11-06. ZHU C, GUO T, LI X L, et al. Separation mechanism microgravity test system:ZL108760267A[P]. 2018-11-06(in Chinese).
[54] 何鹏鹏,徐立力,郑树杰,等. 一种用于太阳翼低温展开试验的重力补偿装置:ZL104326368B[P]. 2016-03-02. HE P P, XU L L, ZHENG S J, et al. A gravity compensation device used for low temperature deployment test of solar wing:ZL104326368B[P]. 2016-03-02(in Chinese).
[55] 李成,梁斌. 基于事件的EMR遥操作自适应规划与控制方法[J].航天控制,2001(3):17-22. LI C, LIANG B. Event-based adaptive planning and control method for EMR teleoperation[J]. Aerospace Control, 2001(3):17-22(in Chinese).
[56] 薛兆璇,候健,陈富帅,等. 一种通用零重力卸载装置:ZL110395415A[P]. 2019-11-01. XUE Z X, HOU J, CHEN F S, et al. A universal zero-gravity unloading device:ZL110395415A[P]. 2019-11-01(in Chinese).
[57] 尚坤,杨洪瑞,罗诗瑶,等. 一种人体测量及训练用随动悬吊式低重力模拟装置:ZL108837429B[P]. 2020-06-09. SHANG K, YANG H R, LUO S Y, et al. A servo suspension low-gravity simulation device for human body measurement and training:ZL108837429B[P]. 2020-06-09(in Chinese).
[58] 齐放,李鹏,赵宝山,等. 一种微低重力模拟装置及模拟试验方法:ZL108423202A[P]. 2018-08-21. QI F, LI P, ZHAO B S, et al. A micro-low gravity simulation device and simulation test method:ZL108423202A[P]. 2018-08-21(in Chinese).
[59] 齐放,李鹏,赵宝山,等. 一种微低重力模拟装置:ZL208498816U[P]. 2019-02-15. QI F, LI P, ZHAO B S, et al. A micro-low gravity simulation device:ZL208498816U[P]. 2019-02-15(in Chinese).
[60] 郑宗勇,张武. 一种模拟月面微重力装置:ZL103662109B[P]. 2016-08-17. ZHENG Z Y, ZHANG W. A device for simulating lunar surface micro gravity:ZL103662109B[P]. 2016-08-17(in Chinese).
[61] 郑圣余,易旺民,鲍晓萍,等. 大型航天器地面零重力分离试验装备:ZL106275491B[P]. 2018-07-20. ZHENG S Y, YI W M, BAO X P, et al. Ground zero gravity separation test equipment for large spacecraft:ZL106275491B[P]. 2018-07-20(in Chinese).
[62] 周金华,陈金宝,陈萌,等. 微重力大型折展天线试验装置:ZL107741334B[P]. 2020-01-21. ZHOU J H, CHEN J B, CHEN M, et al. Large folding antenna micro-gravity test device:ZL107741334B[P]. 2020-01-21(in Chinese).
[63] 林名润,翟玮昊,白彦伟,等. 一种空间机构地面重力补偿方法:ZL107284700A[P]. 2017-10-24. LIN M R, ZHAI W H, BAI Y W, et al. A gravity compensation method for space mechanism on ground:ZL107284700A[P]. 2017-10-24(in Chinese).
[64] 李鹏,白彦伟,陈登海,等. 一种低重力环境模拟装置:ZL203975239U[P]. 2014-12-03. LI P, BAI Y W, CHEN D H, et al. A low gravity environment simulation device:ZL203975239U[P]. 2014-12-03(in Chinese).
[65] 吴荣宗,范正昌,赵维刚. 一种二维随动的重力平衡装置:ZL205350196U[P]. 2016-06-29. WU R Z, FAN Z C, ZHAO W G. A two-dimensional following gravity balance device:ZL205350196U[P]. 2016-06-29(in Chinese).
[66] 高德鹏. 机械臂重力补偿装置的随动系统的设计与实现[D]. 哈尔滨:哈尔滨工业大学, 2015:15-20, 27-44. GAO D P. Design and implementation of servo system for mechanical arm gravity compensation device[D]. Harbin:Harbin Institute of Technology, 2015:15-20, 27-44(in Chinese).
[67] 侯健,王旭东,刘曦,等.星载重叠可展开天线的卸载方法[J].空间电子技术,2017,14(6):60-64. HOU J, WANG X D, LIU X, et al. Gravity uploading of space deployable overlapping antenna[J]. Space Electronic Technology, 2017,14(6):60-64(in Chinese).
[68] 杨毅, 常勇, 王洪光, 等. 全景相机转台低重力补偿装置研究[J]. 机械设计与制造, 2018(9):16-20. YANG Y, CHANG Y, WANG H G, et al. A low gravity compensation device of panoramic camera turntable[J]. Machinery Design & Manufacture, 2018(9):16-20(in Chinese).
[69] YANG Y, CHANG Y, WANG H, et al. A gravity compensation device for the prototype test of panoramic camera platform[C]//2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. Piscataway:IEEE Press, 2017:417-422.
[70] 徐志刚, 辛立明, 赵明扬. 空间对接缓冲试验台对接环重力平衡技术[J]. 仪器仪表学报, 2009, 30(6):1140-1144. XU Z G, XIN L M, ZHAO M Y. Gravity balance technique of active docking ring for spacecraft docking test table[J]. Chinese Journal of Scientific Instrument, 2009, 30(6):1140-1144(in Chinese).
[71] 吴跃民,罗强,王晛,等. 气浮悬吊式太阳翼重力补偿装置的设计与验证[J].机械工程学报, 2020, 56(13):149-155. WU Y M, LUO Q, WANG X, et al. Design and verification of air-floating suspension gravity compensation device for solar wing[J]. Journal of Mechanical Engineering, 2020, 56(13):149-155(in Chinese).
[72] 刘文旭. 月面移动机器人被动重力补偿技术研究[D].北京:北京邮电大学, 2015:19-37. LIU W X. The passive lunar mobile robot gravity compensation study[D]. Beijing:Beijing University of Posts and Telecommunications, 2015:19-37(in Chinese).
[73] 唐锐, 黄海, 黄舟. 基于准零刚度技术的微重力模拟悬吊装置设计与试验研究[J].航天器环境工程,2017,34(2):222-228. TANG R, HUANG H, HUANG Z. Design and experiment of a suspension device based on quasi-zero-stiffness technology for microgravity simulation[J]. Spacecraft Environment Engineering, 2017,34(2):222-228(in Chinese).
[74] 张加波, 王辉, 李云, 等. 基于真空负压吸附的太阳翼重力卸载技术[J]. 机械工程学报, 2020, 56(5):202-210. ZHANG J B, WANG H, LI Y, et al. Gravity compensation technology of solar array based on vacuum negative pressure adsorption[J]. Journal of Mechanical Engineering, 2020, 56(5):202-210(in Chinese).
[75] 李德勇,赖小明,张加波,等. 一种基于柔性机械臂装配的空间杆单元微重力模拟系统:ZL111017273A[P]. 2020-04-17. LI D Y, LAI X M, ZHANG J B, et al. A microgravity simulation system of space bar unit based on flexible mechanical arm assembly:ZL111017273A[P]. 2020-04-17(in Chinese).
[76] 沈晓鹏,曾婷,程泽,等. 一种基于恒力弹簧的二维展开零重力模拟装置和方法:ZL108408088B[P]. 2020-04-10. SHEN X P, ZENG T, CHENG Z, et al. A two-dimensional unfolding zero gravity simulation device and method based on constant force spring:ZL108408088B[P]. 2020-04-10(in Chinese).
[77] 闫搏,张揭,房元鹏,等. 一种基于恒力弹簧的地面微重力模拟系统:ZL207712320U[P]. 2018-08-10. YAN B, ZHANG J, FANG Y P, et al. A ground microgravity simulation system based on constant force spring:ZL207712320U[P]. 2018-08-10(in Chinese).
[78] 徐永利,李潇男,刘勇,等. 空间机械臂地面竖直方向重力补偿控制系统设计[J]. 机器人,2020, 42(2):191-198. XU Y L, LI X N, LIU Y, et al. Design of the gr-avity compensation control system in the vertical direction on the ground for space manipulator[J]. Robot, 2020, 42(2):191-198(in Chinese).
[79] 马国亮,高博,徐明龙,等. 基于音圈电机的环形桁架结构主动悬吊方法[J].航天器环境工程, 2018, 35(1):56-60. MA G L, GAO B, XU M L, et al. Method for active suspension of hoop truss structure based on voice coil motor[J]. Spacecraft Environment Engineering, 2018, 35(1):56-60(in Chinese).
[80] 侯建文,王金明,肖传清,等. 实现微重力环境的液压重力平衡系统:ZL104500459B[P]. 2016-08-17. HOU J W, WANG J M, XIAO C Q, et al. Hydraulic gravity balance system for realizing microgravity environment:ZL104500459B[P]. 2016-08-17(in Chinese).
[81] HUAN S, DENG H. Research on gravity compensation technology for extravehicular activity training facility[C]//Proceedings of the 15th International Conference on Man-Machine-Environment System Engineering. Heidelberg:Springer, 2015:355-363.
[82] 高吾益. 吊丝主动重力补偿系统设计与研究[D]. 哈尔滨:哈尔滨工程大学, 2010:17-71. GAO W Y. Design and research on active gravity compensation system of hanging silk[D]. Harbin:Harbin Engineering University, 2010:17-71(in Chinese).
[83] 陈建鹏,刘鹏,李星太,等. 多关节空间机械臂微低重力模拟方法:ZL104325460B[P]. 2016-05-25. CHEN J P, LIU P, LI X T, et al. Multi-joint space manipulator micro-low gravity simulation method:ZL10432-5460B[P]. 2016-05-25(in Chinese).
[84] 刘鹏,高奔,陈建鹏,等. 一种用于模拟多刚体机械臂运动的空间微低重力补偿方法:ZL104385302B[P]. 2016-01-20. LIU P, GAO B, CHEN J P, et al. A space micro-low gravity compensation method for simulating the movement of multi-rigid-body manipulator:ZL104385302B[P]. 2016-01-20(in Chinese).
[85] 高奔,刘鹏,陈建鹏,等. 关节式机械臂微低重力补偿系统:ZL104175331B[P]. 2015-12-09. GAO B, LIU P, CHEN J P, et al. Articulated manipulator micro-low gravity compensation system:ZL104175-331B[P]. 2015-12-09(in Chinese).
[86] 邵志杰,张朝兴,王静吉,等. 一种多维动态微重力环境模拟方法及系统:ZL109625345A[P]. 2019-04-16. SHAO Z J, ZHANG C X, WANG J J, et al. A multi-dimensional dynamic microgravity environment simulation method and system:ZL109625345A[P]. 2019-04-16(in Chinese).
[87] 谢永权,宋涛,侯鹏,等. 柔性伸展臂一体化展开微重力补偿控制系统:ZL109625344A[P]. 2019-04-16. XIE Y Q, SONG T, HOU P, et al. Integrated micro-gravity compensation control system for flexible extension arm:ZL109625344A[P]. 2019-04-16(in Chinese).
[88] 王玉亮,周骥,王巍,等. 一种基于磁吸小车的悬吊式重力卸载系统:ZL110450992A[P]. 2019-11-15. WANG Y L, ZHOU J, WANG W, et al. A suspended gravity unloading system based on magnetic suction trolley:ZL110450992A[P]. 2019-11-15(in Chinese).
[89] 姚燕生. 三维重力补偿方法与空间浮游目标模拟实验装置研究[D]. 合肥:中国科学技术大学,2006:32-76. YAO Y S.Research on 3-D gravity compensation and equipment of space floating objective simulation[D]. Hefei:University of Science and Technology of China, 2006:32-76(in Chinese).
[90] 刘振. 星球车单吊索重力补偿与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2013:15-27, 94-121. LIU Z. Single-cable gravity compensation for planetary rovers and experimental researches[D]. Harbin:Harbin Institute of Technology, 2013:15-27, 94-121(in Chinese).
[91] 高扬. 悬吊法水平随动控制系统设计[D]. 哈尔滨理工大学, 2017:16-50. GAO Y. Design of horizontal servo control system by suspension method[D]. Harbin:Harbin University of Science and Technology, 2017:16-50(in Chinese).
[92] 阮晓峰. 空间机械臂多吊索重力补偿悬吊机构设计及补偿力分析[D]. 哈尔滨:哈尔滨工业大学, 2014:34-64. RUAN X F. Suspension mechanism design and compensation force analysis of multi-sling ground gravity compensation of space manipulator[D]. Harbin:Harbin Institute of Technology, 2014:34-64(in Chinese).
[93] 曲健刚. 悬吊式低重力模拟系统控制研究[D]. 哈尔滨:哈尔滨工业大学, 2017:20-40. QU J G. The control research of suspended low-gravity simulation system[D]. Harbin:Harbin Institute of Technology, 2017:20-40(in Chinese).
[94] 张嫣然. 重力补偿装置设计与实验[D]. 哈尔滨:哈尔滨工业大学, 2017:17-52. ZHANG Y R. Design and experiment of gravity compensation equipment[D]. Harbin:Harbin Institute of Technology, 2017:17-52(in Chinese).
[95] 李伟才. 飞行器月面垂直分离模拟试验台研究[D]. 哈尔滨:哈尔滨工业大学, 2016:19-38. LI W C. Research on the testbed for the simulated vertical separation on the lunar surface of spacecrafts[D]. Harbin:Harbin Institute of Technology, 2016:19-38(in Chinese).
[96] 贾英民,贾娇,孙施浩,等. 一种悬挂式六自由度微重力环境模拟系统:ZL106005497B[P]. 2018-01-02. JIA Y M, JIA J, SUN S H, et al. A suspended six-degree-of-freedom microgravity environment simulation system:ZL106005497B[P]. 2018-01-02(in Chinese).
[97] 贾英民,孙施浩,郑文昊,等. 空间任务可置换的自由基座运动再现跨尺度验证装置:ZL107161360B[P]. 2019-06-11. JIA Y M, SUN S H, ZHENG W H, et al. Spatial task replaceable free base motion reproduction cross-scale verification device:ZL107161360B[P]. 2019-06-11(in Chinese).
[98] 徐志刚, 王昊, 王军义, 等. 空间机器人悬挂系统重力补偿研究[J]. 机械设计与制造, 2014(10):149-152. XU Z G, WANG H, WANG J Y, et al. The research of space robot suspension system gravity compensation[J]. Machinery Design & Manufacture, 2014(10):149-152(in Chinese).
[99] 肖杰,张玉花,徐志刚,等. 一种低重力模拟装置及方法:ZL104118580B[P]. 2016-10-19. XIAO J, ZHANG Y H, XU Z G, et al. A low gravity simulation device and method:ZL104118580B[P]. 2016-10-19(in Chinese).
[100] 杨晓青,罗小桃,刘殿富,等.月球车移动系统可靠性试验技术研究[J].载人航天,2019,25(5):631-639. YANG X Q, LUO X T, LIU D F, et al. Research on reliability test technology for mobile system of lunar rover[J]. Manned Spaceflight,2019,25(5):631-639(in Chinese).
[101] 贺云, 张飞龙, 杨明毅, 等. 卫星天线展开臂的随动吊挂重力补偿系统设计[J]. 机器人, 2017, 40(3):377-384,392. HE Y, ZHANG F L, YANG M Y, et al. Design of tracking suspension gravity compensation system for satellite antenna deployable manipulator[J]. Robot, 2017, 40(3):377-384,392(in Chinese).
[102] 励红峰. 零重力多维展开试验装置研究[D]. 杭州:浙江工业大学, 2015:17-27. LI H F. Research of zero gravity multidimensional unfolding test apparatus[D]. Hangzhou:Zhejiang University of Technology, 2015:17-27(in Chinese).
[103] 刘付成,朱东方,孙禄军,等. 一种超大尺度柔性航天器地面物理仿真试验系统:ZL106527178B[P]. 2019-04-30. LIU F C, ZHU D F, SUN L J, et al. A ground physical simulation test system for super-large-scale flexible spacecraft:ZL106527178B[P]. 2019-04-30(in Chinese).
[104] FREY M, COLOMBO G, VAGLIO M, et al. A novel mechatronic body weight support system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(3):311-321.
[105] 于宁波, 杨卓, 孙玉波, 等. 一种面向步态和平衡康复训练的单绳悬吊主动减重系统设计与控制方法研究[J]. 自动化学报, 2016, 42(12):1819-1831. YU N B, YANG Z, SUN Y B, et al. Design and control of an active gravity offloading system for rehabilitation training of gait and balance[J]. Acta Automatica Sinca, 2016, 42(12):1819-1831(in Chinese).
[106] YANG Z, SUN Y, LEI Y, et al. Realization and experimental test of a body weight support unit for simultaneous position tracking and gravity offloading[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway:IEEE Press, 2016:1064-1068.
[107] 牛福亮. 串联张紧式恒拉力系统动力学建模及控制研究[D]. 哈尔滨:哈尔滨工业大学, 2017:20-37. NIU F L. Research on dynamics modeling and control of tandem tensioning constant force system[D]. Harbin:Harbin Institute of Technology, 2017:20-37(in Chinese).
[108] 牛福亮, 高海波, 刘振, 等. 一种串联张紧式恒力矩机构设计及实验研究[J]. 机器人, 2016, 38(4):475-485. NIU F L, GAO H B, LIU Z, et al. Design and experimental research of a tandem tensioning constant-torque mechanism[J]. Robot, 2016, 38(4):475-485(in Chinese).
[109] LIU Z, NIU F L, GAO H B, et al. Design, analysis, and experimental validation of an active constant-force system based on a low-stiffness mechanism[J]. Mechanism and Machine Theory, 2018, 130:1-26.
[110] WANG P Y, XU Q S. Design and modeling of constant-force mechanisms:A survey[J]. Mechanism and Machine Theory, 2018, 119:1-21.
[111] RILEY R Q, CAREY D L. Exercise machine with spring-cam arrangement for equalizing the force required through the exercise stroke:U.S. Patent 4231568[P]. 1980-11-4.
[112] YAN H, LI L M, HU C H, et al. Astronaut mass measurement using linear acceleration method and the effect of body non-rigidity[J]. Science China Physics, Mechanics &Astronomy, 2011,54(4):777-782.
[113] 冯维明, 李辉. 恒力弹簧支吊架凸轮曲线方程推导[J]. 现代制造工程, 2006(8):95-97. FENG W M, LI H. The derivation about the curve equation of cam s in constant supporting spring hangers[J]. Modern Manufacturing Engineering, 2006(8):95-97(in Chinese).
[114] 齐乃明,高九州,周启航,等. 空间零重力地面模拟系统的滑模变结构控制[J].自动化与仪表, 2011, 26(10):1-3. QI N M, GAO J Z, ZHOU Q H, et al. Sliding model variable structure control of ground simulation test system for spatial microgravity environment[J]. Automation & Instrumentation, 2011, 26(10):1-3(in Chinese).
[115] 林旭梅. 基于小脑模型的智能控制方法及其在重力补偿系统的应用[D]. 合肥:中国科学技术大学, 2006:96-125. LIN X M. Intelligent control method based on CMAC theory and its application on microgravity compensation system[D]. Hefei:University of Science and Technology of China, 2006:96-125(in Chinese).
[116] 邹胜宇,刘振,高海波,等. 基于干扰力时间积分的悬吊漂浮物随动控制方法[J].机器人,2015, 37(1):1-8. ZOU S Y, LIU Z, GAO H B, et al. Tracking control method for suspended floater based on time integral of disturbance force[J]. Robot, 2015, 37(1):1-8(in Chinese).
[117] 邹胜宇. 悬吊式零重力模拟系统的水平位置随动技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014:23-42. ZOU S Y. Research on technologies of horizontal position tracking for suspended zero-gravity simulation system[D]. Harbin:Harbin Institute of Technology, 2014:23-42(in Chinese).
[118] 尤波, 高扬, 许家忠, 等. 悬吊漂浮物随动系统的等效滑模控制研究[J]. 控制工程, 2018, 25(11):1959-1964. YOU B, GAO Y, XU J Z, et al. Study on equivalent sliding mode control of suspended-floater follow-up system[J]. Control Engineering of China, 2018, 25(11):1959-1964(in Chinese).
[119] DE STEFANO M, ARTIGAS J, SECCHI C. A passive integration strategy for rendering rotational rigid-body dynamics on a robotic simulator[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2017:2806-2812.
[120] ALBU-SCHÄFFER A, PETIT C O F. Energy shaping control for a class of underactuated Euler-Lagrange systems[J]. IFAC Proceedings Volumes, 2012, 45(22):567-575.
[121] KEPPLER M, LAKATOS D, OTT C, et al. Elastic structure preserving (ESP) control for compliantly actuated robots[J]. IEEE Transactions on Robotics, 2018, 34(2):317-335.
Outlines

/