Review

Spacecraft guidance and control based on artificial intelligence: Review

  • HUANG Xuxing ,
  • LI Shuang ,
  • YANG Bin ,
  • SUN Pan ,
  • LIU Xuewen ,
  • LIU Xinyan
Expand
  • 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. Beijing Institute of Control Engineering, Beijing 100190, China

Received date: 2020-05-08

  Revised date: 2020-06-04

  Online published: 2020-07-06

Supported by

Technology and Industry Bureau of Civil Aerospace "13th Five-Year" preliminary Research Project (D010305); Funded by Science and Technology on Space Intelligent Control Laboratory (HTKJ2019KL502012,KGJZDSYS-2018-11)

Abstract

Spacecraft guidance and control technology is one of the key technologies to ensure successful implementation of space missions. Currently, the strong nonlinearity of dynamic models and the uncertainty of parameters restrict the development of high-precision attitude and orbit control technology, while the system failure determines the success or failure of the spacecraft attitude and orbit control. The new generation of artificial intelligence technology represented by machine learning shows tremendous potential in the field of spacecraft guidance and control. This paper first summarizes the research development and application status of trajectory guidance and attitude control based on artificial intelligence technology, and analyzes the development trend of spacecraft trajectory planning, attitude control, fault diagnosis and fault-tolerant control technology. Then, from the four aspects of robust trajectory planning, adaptive attitude control, rapid fault diagnosis, and adaptive fault tolerance control, the key technologies of spacecraft attitude and orbit control suitable for future space missions are reviewed. Finally, according to the challenges faced by the application of intelligent navigation and control technology, corresponding development suggestions are proposed in terms of strategy construction, algorithm optimality, training and technical verification.

Cite this article

HUANG Xuxing , LI Shuang , YANG Bin , SUN Pan , LIU Xuewen , LIU Xinyan . Spacecraft guidance and control based on artificial intelligence: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(4) : 524201 -524201 . DOI: 10.7527/S1000-6893.2020.24201

References

[1] WARWICK G. DARPA leads drive to build trust in AI for aerospace. Aviationweek[EB/OL]. (2019-07-24)[2020-04-03]. https://aviationweek.com/air-transport/darpa-leads-drive-build-trust-ai-aerospace.
[2] SEBASTIANELLI A, DEL ROSSO M P, ULLO S L. Automatic dataset builder for machine learning applications to satellite imagery[DB/OL]. arXiv preprint arXiv:2008.01578, 2020.
[3] IZZO D, MRTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4):287-299.
[4] IZZO D, SPRAGUE C I, TAILOR D V. Machine learning and evolutionary techniques in interplanetary trajectory design[M]//Modeling and optimization in space engineering. Cham:Springer, 2019:191-210.
[5] 王伟林. 空间机动飞行器清除碎片任务规划与制导控制技术[D]. 长沙:国防科技大学, 2017:1-17. WANG W L. Mission plan of active debris removal and design of guidance and control techniques applying space maneuver vehicle[D]. Changsha:National University of Defense Technology, 2017:1-17(in Chinese).
[6] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测, 2018, 1(1):30-39. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection, 2018, 1(1):30-39(in Chinese).
[7] XU Y, LUO D, LI D, et al. Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance[J]. Chinese Journal of Aeronautics, 2019, 32(12):2679-2693.
[8] LI S, SHE Y. Recent advances in contact dynamics and post-capture control for combined spacecraft[J]. Progress in Aerospace Sciences, 2021,120:100678.
[9] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4):7-18. YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application, 2019, 45(4):7-18(in Chinese).
[10] 蔡鹏. 挠性航天器建模与姿态控制系统研究[D]. 哈尔滨:哈尔滨工业大学, 2008:1-16. CAI P. Dynamic modeling and attitude control for flexible spacecraft[D]. Harbin:Harbin Institute of Technology, 2008:1-16(in Chinese).
[11] 葛东明, 史纪鑫, 邓润然, 等. 一种柔性多体动力学建模方法及其工程应用[J]. 航天器环境工程, 2019, 36(4):323-329. GE D M, SHI J X, DENG R R, et al. Flexible multi-body dynamics modeling and its engineering application[J]. Spacecraft Environment Engineering, 2019, 36(4):323-329(in Chinese).
[12] 袁旭, 朱圣英, 乔栋, 等. 小天体着陆动力学参数不确定性影响分析[J]. 深空探测学报, 2014, 1(2):56-61. YUAN X, ZHU S Y, QIAO D, et al. Impact analysis of dynamic parameters uncertainty on small celestial body landing[J]. Journal of Deep Space Exploration, 2014, 1(2):56-61(in Chinese).
[13] HUANG Y X, LI S, SUN J. Mars entry fault-tolerant control via neural network and structure adaptive model inversion[J]. Advances in Space Research, 2019, 63(1):557-571.
[14] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J].航空学报, 2020, 41(1):50-62. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):50-62(in Chinese).
[15] 包为民.航天智能控制技术让运载火箭"会学习"[J].航空学报, 2021, 42(11):525055. BAO W M. Space intelligent control technology enables launch vehicle to "self-learning"[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525055(in Chinese).
[16] TRUSZKOWSKI W, HALLOCK H, ROUFF C, et al. Autonomous and autonomic systems:With applications to NASA intelligent spacecraft operations and exploration systems[M]. Berlin:Springer Science & Business Media, 2010:173-186.
[17] HASSRIZAL H B, ROSSITER J A. A survey of control strategies for spacecraft attitude and orientation[C]//2016 UKACC 11th International Conference on Control (CONTROL). Piscataway:IEEE Press, 2016.
[18] SCHIERMAN J D, WARD D G, HULL J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance Control and Dynamics, 2004, 27(6):975-988.
[19] REITER J A, SPENCER D B, LINARES R. Spacecraft detection avoidance maneuver optimization using reinforcement learning[C]//29th AAS/AIAA Space Flight Mechanics Meeting, 2019:3055-3069.
[20] ZHU Y H, LUO Y Z. Fast evaluation of low-thrust transfers via deep neural networks[DB/OL]. arXiv preprint:1902.03738, 2019.
[21] 李海洋, 宝音贺西. 小推力转移燃料消耗估计的机器学习方法[J]. 深空探测学报, 2019, 6(2):195-200. LI H Y, BAOYIN H X. Machine learning method of estimation for fuel consumption of low-thrust transfers[J]. Journal of Deep Space Exploration, 2019, 6(2):195-200(in Chinese).
[22] LI H Y, TOPPUTO F, BAOYIN H X. Autonomous time-optimal many-revolution orbit raising for electric propulsion geo satellites via neural networks[DB/OL]. arXiv preprint:1909.08768, 2019.
[23] LI H Y, CHEN S, IZZO D, et al. Deep networks as approximators of optimal transfers solutions in multitarget missions[DB/OL]. arXiv preprint:1902.00250, 2019.
[24] SULLIVAN C J, BOSANAC N. Using reinforcement learning to design a low-thrust approach into a periodic orbit in a multi-body system[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[25] SONG Y, GONG S. Solar-sail trajectory design for multiple near-Earth asteroid exploration based on deep neural networks[J]. Aerospace Science and Technology, 2019, 91:28-40.
[26] LI S, HUANG X X, YANG B. Review of optimization methodologies in global and china trajectory optimization competitions[J]. Progress in Aerospace Sciences, 2018, 102:60-75.
[27] WITSBERGER P A, LONGUSKI J M. Interplanetary trajectory design using a recurrent neural network and genetic algorithm:preliminary results[C]//AAS/AIAA Astrodynamics Specialist Conference, 2018.
[28] CHENG L, WANG Z, JIANG F, et al. Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(5):2436-2450.
[29] MILLER D, LINARES R. Low-thrust optimal control via reinforcement learning[C]//29th AAS/AIAA Space Flight Mechanics Meeting, 2019:1-18.
[30] BATALEBLU A A, ROSHANIAN J. Robust trajectory optimization of space launch vehicle using computational intelligence[C]//2015 IEEE Congress on Evolutionary Computation (CEC). Piscataway:IEEE Press, 2015.
[31] WILLIS S, IZZO D, HENNES D. Reinforcement learning for spacecraft maneuvering near small bodies[C]//AAS/AIAA Space Flight Mechanics Meeting, 2016.
[32] 王晓晖, 李爽. 考虑动态不确定因素的深空探测器任务规划[J]. 中国空间科学技术, 2016, 36(6):29-37. WANG X H, LI S. A mission planning method for deep space explorer considering dynamic uncertainties[J]. Chinese Space Science and Technology, 2016, 36(6):29-37(in Chinese).
[33] LAFARGE N B, MILLER D, HOWELL K C, et al. Guidance for closed-loop transfers using reinforcement learning with application to libration point orbits[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[34] ARORA L, DUTTA A. Reinforcement learning for sequential low-thrust orbit raising problem[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020:2186.
[35] FURFARO R, BLOISE I, ORLANDELLI M, et al. A recurrent deep architecture for quasi-optimal feedback guidance in planetary landing[C]//AIAA SciTech Forum on Space Flight Mechanics and Space Structures and Materials. Forum.Reston:AIAA, 2018:1-24.
[36] CHENG L, WANG Z, JIANG F. Real-time control for fuel-optimal Moon landing based on an interactive deep reinforcement learning algorithm[J]. Astrodynamics, 2019, 3(4):375-386.
[37] FURFARO R, LINARES R. Waypoint-based generalized ZEM/ZEV feedback guidance for planetary landing via a reinforcement learning approach[C]//3rd International Academy of Astronautics Conference on Dynamics and Control of Space Systems, 2017:401-406.
[38] LI S, JIANG X. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69:40-57.
[39] ZHENG X, HUANG H, LI W. Neural-network-based real-time trajectory replanning for Mars entry guidance[C]//Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(14):2634-2645.
[40] LI S, PENG Y M. Neural networks based sliding mode variable structure control for Mars entry[J]. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2012, 226(11):1373-1386.
[41] LI S, JIANG X Q. RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties[J]. Aerospace Science and Technology, 2015, 43:226-235.
[42] SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks:Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5):1122-1135.
[43] JOHNSON E N, CALISE A J, CORBAN J E. Reusable launch vehicle adaptive guidance and control using neural networks[C]//AIAA Guidance, Navigation and Control Conference. Reston:AIAA. 2001.
[44] 陈书钊, 楚龙飞, 杨秀梅, 等. 状态预测神经网络控制应用于小型可回收火箭[J]. 航空学报, 2019, 40(3):149-163. CHEN S Z, CHU L F, YANG X M, et al. Application of state prediction neural network control algorithm in small reusable rocket[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):149-163(in Chinese).
[45] NIE W, LI H, ZHANG R. Model-free adaptive optimal design for trajectory tracking control of rocket-powered vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(6):1703-1716.
[46] GAUDET B, FURFARO R. Adaptive pinpoint and fuel efficient Mars landing using reinforcement learning[J]. IEEE/CAA Journal of Automatica Sinica, 2014, 1(4), 397-411.
[47] GAUDET B, LINARES R, FURFARO R. Deep reinforcement learning for six degree-of-freedom planetary powered descent and landing[DB/OL]. arXiv preprint:1810.08719, 2018.
[48] JIANG X Q, FURFARO R, LI S. Integrated guidance for Mars entry and powered descent using reinforcement learning and pseudospectral method[J]. Acta Astronautica, 2019, 163:114-129.
[49] LEITNER J, AMPATZIS C, IZZO D. Evolving ANNs for spacecraft rendezvous and docking[C]//10th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2010.
[50] LAN X, QIN C, LIU Y, et al. Intelligent guidance of autonomous mobile robots based on adaptive dynamic programming[C]//2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2019:695-699.
[51] MURUGESAN S. Application of AI to real-time intelligent attitude control of spacecraft[C]//Proceedings. IEEE International Symposium on Intelligent Control. Piscataway:IEEE Press, 1989.
[52] GATES R, CHOI M, BISWAS S K, et al. Stabilization of flexible structures using artificial neural networks[C]//Proceedings of 1993 International Conference on Neural Networks. Piscataway:IEEE Press, 1993, 2:1817-1820.
[53] HU Q, XIAO B. Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation[J]. Aerospace Science and Technology, 2012, 23(1):63-74.
[54] CHENG C H, SHU S L. Application of GA-based neural network for attitude control of a satellite[J]. Aerospace Science and Technology, 2010, 14(4):241-249.
[55] SCHRAM G, KARSTEN L, KRÖSE B J, et al. Optimal attitude control of satellites by artificial neural networks:A pilot study[C]//IFAC Symposium on Artificial Intelligence in Real Time Control,1994:173-178.
[56] BERENJI H R, LEA R N, JANI Y, et al. Space shuttle attitude control by reinforcement learning and fuzzy logic[C]//1993 Second IEEE International Conference on Fuzzy Systems. Piscataway:IEEE Press,1993:1396-1401.
[57] VAN BUIJTENEN W M, SCHRAM G, BABUSKA R, et al. Adaptive fuzzy control of satellite attitude by reinforcement learning[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(2):185-194.
[58] HUANG X Y, WANG Q, DONG C Y. Neural network adaptive robust attitude control of spacecraft[C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Piscataway:IEEE Press, 2009, 2:747-751.
[59] LI D Y, MA G F, LI C J, et al. Distributed attitude coordinated control of multiple spacecraft with attitude constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5):2233-2245.
[60] MA Z, WANG Y, YANG Y, et al. Reinforcement learning-based satellite attitude stabilization method for non-cooperative target capturing[J]. Sensors, 2018, 18(12):4331.
[61] SATHYAN K, GOPINATH K, LEE S H, et al. Bearing retainer designs and retainer instability failures in spacecraft moving mechanical systems[J]. Tribology Transactions, 2012, 4(55):503-511.
[62] 荣吉利. 基于模型的航天器在轨传感器故障诊断方法[J]. 兵工学报, 2002, 23(2):242-245. RONG J L. A model-based onboard fault diagnosis for spacecraft sensors[J]. Acta Armamentarii, 2002, 23(2):242-245(in Chinese).
[63] 肖冰, 胡庆雷, 马广富. 基于观测器的航天器执行机构失效故障重构[J]. 宇航学报, 2011, 32(2):323-328. XIAO B, HU Q L, MA G F. Observer based fault reconstruction for spacecraft under loss of actuator effectiveness[J]. Journal of Astronautics, 2011, 32(2):323-328(in Chinese).
[64] 耿云海, 金荣玉, 陈雪芹, 等. 执行机构故障的航天器姿态容错控制[J]. 宇航学报, 2017, 38(11):1186-1194. GENG Y H, JIN R Y, CHEN X Q, et al. Spacecraft attitude fault tolerant control with actuator fault[J]. Journal of Astronautics, 2017, 38(11):1186-1194(in Chinese).
[65] 韩宇. 执行器故障情况下的航天器姿态容错控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2016. HAN Y. Spacecraft attitude fault-tolerant control methods with actuator fault[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[66] YIN S, XIAO B, DING S X, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320.
[67] POOLEY J, THOMPSON W, HOMSLEY T, et al. Embedded expert system for space shuttle main engine maintenance[C]//Third Conference on Artificial Intelligence for Space Applications, 1987:115-119.
[68] ERIKSON C L, HOOKER P. Tracking and data relay satellite fault isolation and correction using PACES:Power and attitude control expert system[C]//The 1989 Goddard Conference on Space Applications of Artificial Intelligence, 1989:161-168
[69] MURUGESAN S. Application of AI to real-time intelligent attitude control of spacecraft[C]//IEEE International Symposium on Intelligent Control. Piscataway:IEEE Press, 1989:287-292.
[70] ELLIOTT JR W M, MORDECHAY S. Fault finder expert system[R]. Washington, D.C.:U.S. Patent and Trademark Office,1993
[71] MARK S, JEFF S, LEE B. The NASA integrated vehicle health management technology experiment for X-37[C]//AeroSense 2002 International Society for Optics and Photonics, 2002:1-12.
[72] ORTIZ N, HERNáNDEZ R D, JIMENEZ R, et al. Survey of biometric pattern recognition via machine learning techniques[J]. Contemporary Engineering Sciences, 2018, 11(34):1677-1694.
[73] PAAL L, GOLSHAN N, FISHER F, et al. Background and architecture for an autonomous ground station controller[C]//19th AIAA International Communications Satellite Systems Conference. Reston:AIAA, 2001.
[74] WU Q, SAIF M. Robust fault diagnosis for a satellite large angle attitude system using an iterative neuron PID (INPID) observer[C]//2006 American Control Conference. Piscataway:IEEE Press. 2006:6.
[75] TALEBI H A, PATEL R V, KHORASANI K. Fault detection and isolation for uncertain nonlinear systems with application to a satellite reaction wheel actuator[C]//2007 IEEE International Conference on Systems, Man and Cybernetics. Piscataway:IEEE Press, 2007:3140-3145.
[76] LI X, LI J, QU Y, et al. Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning[J]. Chinese Journal of Aeronautics, 2020, 33(2):418-426.
[77] LI Z Q, MA L, KHORASANI K. A dynamic neural network-based reaction wheel fault diagnosis for satellites[C]//The 2006 IEEE International Joint Conference on Neural Network Proceedings. Piscataway:IEEE Press, 2006:3714-3721.
[78] RAUCH H E, SCHAECHTER D B. Neutral networks for control, identification and diagnosis[J]. Advances in Space Research, 1994, 14(11):297-305.
[79] TALEBI H A, KHORASANI K, TAFAZOLI S. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem[J]. IEEE Transactions on Neural Networks, 2008, 20(1):45-60.
[80] 李新. 基于神经网络的航天器姿态控制系统故障诊断研究[D].沈阳:沈阳航空航天大学, 2016. LI X. Research on fault diagnosis in the spacecraft attitude control system using neural network[D]. Shenyang:Shenyang Aerospace University, 2016(in Chinese).
[81] LIN S, YING Z. Fault diagnosis of navigation satellite attitude control system based on data-driven combined with artificial intelligence[C]//China Satellite Navigation Conference (CSNC), 2012.
[82] 耿飞龙, 李爽, 黄旭星, 等. 基于深度神经网络的航天器姿态控制系统故障诊断与容错控制研究[J]. 中国空间科学技术, 2020, 40(6):1-12. GENG F L, LI S, HUANG X X, et al. Fault diagnosis and fault tolerant control of spacecraft attitude control system via deep neural network[J]. Chinese Space Science and Technology, 2020, 40(6):1-12(in Chinese).
[83] HUANG Y, LI S, SUN J. Mars entry fault-tolerant control via neural network and structure adaptive model inversion[J]. Advances in Space Research, 2019, 63(1):557-571.
[84] 宋其江. 基于有向图模型的故障诊断方法研究及其在航天中的应用[D]. 哈尔滨:哈尔滨工业大学, 2010. SONG Q J. Research on fault diagnosis approach based on digraph model and its application in aerospace[D]. Harbin:Harbin Institute of Technology, 2010(in Chinese).
[85] PEREIRA A, MOURA-PIRES F, RIBEIRO R A, et al. Fuzzy expert system for gyroscope fault detection[C]//Proceedings of the 16th European Simulation Multiconference on Modelling and Simulation, 2002.
[86] YANG M K, CHENG Y H, JIANG B. Reliable controller design based on self-organization fuzzy neural network for satellite attitude control systems[C]//Proceedings of the 29th Chinese Control Conference. Prescataway:IEEE Press, 2010.
[87] LIANG J J, DONG C Y, WANG Q. A fault-tolerant attitude control system for a satellite based on fuzzy global sliding mode control algorithm[C]//Seventh International Symposium on Instrumentation and Control Technology:Measurement Theory and Systems and Aeronautical Equipment, 2008:7128.
[88] PANAGI P, POLYCARPOU M M. Decentralized fault tolerant control of a class of interconnected nonlinear systems[J]. IEEE Transactions on Automatic Control, 2010, 56(1):178-184.
[89] BALDI P, CASTALDI P, MIMMO N, et al. Satellite attitude active FTC based on geometric approach and RBF neural network[C]//2013 Conference on Control and Fault-Tolerant Systems (SysTol). Piscataway:IEEE Press, 2013:667-673.
[90] CHEN M, TAO G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone[J]. IEEE Transactions on Cybernetics, 2015, 46(8):1851-1862.
[91] 黄怡欣,李爽,江秀强. 基于自适应迭代学习的小行星绕飞容错控制[J]. 中国空间科学技术, 2017, 37(1):1-10. HUANG Y X, LI S, JIANG X Q. Adaptive iterative learning based fault tolerant control for asteroid orbiting[J]. Chinese Space Science and Technology, 2017, 37(1):1-10(in Chinese).
[92] 王若男. 基于神经网络观测器的飞控系统故障诊断与容错控制研究[D]. 南京:南京航空航天大学, 2018. WANG R N. Neural network observer-based fault diagnosis and tolerant control for flight control systems[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
[93] HUO B, XIA Y, LU K, et al. Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft[J]. Journal of the Franklin Institute, 2015, 352(10):4225-4246.
[94] 颜军. 基于S698PM星载计算机的设计[C]//2019航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会, 2019:653-656,659. YAN J. Design of spaceborne on-board computer(OBC) using S698PM[C]//Aviation Cquipment Service Support and Maintenance Technical Forum and Annual Meeting of China Aviation Industry Technical Equipment Engineering Association, 2019:653-656,659(in Chinese).
Outlines

/