Overset grid assembly is one of the key technologies dealing with multi-body motion in the field of computational fluid dynamics. Existing implicit assembly methods usually have problems of complicated geometric analysis and low assembly efficiency caused by the search operation among all nodes. To address these issues, a highly automated overset grid implicit assembly method is proposed. First, based on fast algorithms such as the covariance analysis and box cutting, the calculation of wall distance is decoupled from the existence judgment of contribution units, realizing automatic identification of the dynamic overset relationship of grid groups. Secondly, combined with the set analysis, a parallel automatic digging algorithm is designed. Finally, a quick query method is used to establish the interpolation relationship between overset cells and denoting cells. In view of the implemented parallel overset grid implicit assembly library, a five-sphere component is used to verify the accuracy of the automatic digging scheme, and the accuracy of the interpolation relationship between the overset cells and denoting cells is also verified by the Wing-Pylon-Finned Store(WPFS) model.
GUO Yongheng
,
JIANG Xiong
,
XIAO Zhongyun
,
WANG Ziwei
,
LU Fengshun
. An automatic parallel and implicit assembly method for overset grid[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(6)
: 124369
-124369
.
DOI: 10.7527/S1000-6893.2020.24369
[1] YANG C, XUE W, FU H H. 10M-core scalable fullyimplicit solver for nonhydrostatic atmospheric dynamics[C]//SC16:International Conference for High Performance Computing, Networking, Storage and Analysis, 2016:57-68.
[2] 卢丛玲,史勇杰,徐国华. 共轴刚性旋翼悬停状态气动干扰机理[J].南京航空航天大学学报, 2019, 51(2):201-207. LU C L,SHI Y J,XU G H. Research on aerodynamic interaction mechanism of rigid coaxial rotor in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(2):201-207(in Chinese).
[3] 吴希明,祁浩天,马率. 共轴刚性旋翼气动干扰数值计算方法[J]. 南京航空航天大学学报, 2019, 51(2):147-153. WU X M,QI H T, MA S. Numerical method of coaxial rigid rotor aerodynamic interation[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(2):147-153(in Chinese).
[4] 张曼曼,姜毅,程李东. 基于嵌套网格的超声速子母弹分离数值分析[J]. 兵工学报,2019, 40(1):79-88. ZHANG M M,JIANG Y, CHENG L D. Numerical analysis of separation of supersonic submunition based on nested grid[J]. Acta Armamentar, 2019,40(1):79-88(in Chinese).
[5] 袁亚,李冬,马友林. 基于非结构嵌套网格的低空大动压头罩分离数值模拟[J]. 导弹与航天运载技术. 2019,(5):17-22. YUAN LI D, MA Y L. Numerical simulation of shroud separation with overset unstructured grid in low altitude with high dynamic pressure[J]. Missiles and Space Vehicles, 2019(5):17-22(in Chinese).
[6] 郑小龙,吴彬,王明振. 基于重叠网格的水陆两栖飞机静水滑行模拟[J].船海工程,2019,48(1):49-52. ZHENG X L,WU B,WANG M Z. Simulation of seaplane sliding in still water based on overset mesh[J]. Ship & Ocean Engineering, 2019, 48(1):49-52(in Chinese).
[7] 范晶晶,张海瑞,管飞. 外挂式导弹机弹分离气动干扰特性研究[J].国防科技大学学报,2018,40(2):13-21. FAN J J,ZHANG H R,GUAN F. Studies of aerodynamic interference characteristics for external store separation[J]. Journal of National University of Defense Technology, 2018, 40(2):13-21(in Chinese).
[8] MEAKIN R L. Object X-rays for cutting holes in composite overset structured grids:AIAA-2001-2537[R]. Reston:AIAA, 2001.
[9] CHAN W M, PANDYA S A. Advances in distance-based hole cuts on overset grids[C]//Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2015.
[10] MEAKIN R L, WISSINK A M. Unsteady aerodynamic simulation of static and moving bodies using scalable computers[C]//14th Computational Fluid Dynamics Conference, 1999.
[11] BELK D, MAPLE R. Automated assembly of structured grids for moving body problems[C]//Proceedings of the 12th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 1995.
[12] SUHS N, ROGERS S, DIETZ W. Pegasus 5:An automated pre-processor for overset-grid CFD[J]. AIAA Journal, 2003, 41(6):1037-1045.
[13] NOACK R W, BOGER D A. Improvements to suggar and dirtlib for overset store separation simulations[C]//Proceedings of the 47th AIAA Aerospace Science and Exhibit. Reston:AIAA, 2009.
[14] NOACK R W, BOGER D A, KUNZ R F. Suggar++:An improved general overset grid assembly capability[C]//Proceedings of the 47th AIAA Aerospace Science and Exhibit. Reston:AIAA, 2009.
[15] ROGET B, SITARAMAN J. Robust and scalable overset grid assembly for partitioned unstructured meshes[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013.
[16] LEE Y L, BAEDER J D. Implicit hole cutting-A new approach to overset grid connectivity[C]//AIAA 16th Computational Fluid Dynamics Conference. Reston:AIAA, 2003.
[17] DOMINIC D J, CHANDAR, WENTAKA B L. A comparative study of different overset grid solvers between OpenFOAM, STAR-CCM+ and ANSYS-Fluent[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston:AIAA, 2018.
[18] NAKAHASHI K, TOGASHI F. An Inter-grid-boundary definition method for overset unstructured grid approach[J]. AIAA Journal, 2000, 38(11):2077-2084.
[19] TOGASHI F, YASUSHI I, NAKAHASHI K. Overset unstructured grids method for viscous flow computations[J]. AIAA Journal, 2006, 44(7):1617-1623.
[20] ROGET B, SITARAMAN J. Robust and efficient overset grid assembly for partitioned unstructured meshes[J]. Journal of Computational Physics, 2014, 260:1-24.
[21] MOHAMMADADI H, IMAN B. A parallel dynamic overset grid framework for immersed boundary methods[DB/OL]. arXiv preprint:1910.09315.2019.
[22] 常兴华, 马戎, 张来平. 并行化非结构重叠网格隐式装配技术[J]. 航空学报, 2018, 39(6):121780. CHANG X H, MA R, ZHANG L P. Parallel implicit hole-cutting method for unstructured overset grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121780(in Chinese).
[23] WIGTON L. Research in computational aeroscience applications implemented on advanced parallel computing systems:Final Report of NAS2-14090[R]. Washington,D.C.:NASA, 1996.
[24] BONET J, PERAIRE J. An alternating digital tree(ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991,31(1):1-17.
[25] 周铸, 黄江涛, 高正红. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1):522370. ZHOU Z, HUANG J T, GAO Z H. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522370(in Chinese).
[26] HALL L H, PARTHASARATHY V. Validation of an automated Chimera/6-DOF methodology for multiple moving body problems:AIAA-1998-0753[R]. Reston:AIAA, 1998.