Electronics and Electrical Engineering and Control

Capture region of RTPN guidance law against arbitrarily maneuvering targets

  • BAI Zhihui ,
  • LI Kebo ,
  • SU Wenshan ,
  • CHEN Lei
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China

Received date: 2020-03-08

  Revised date: 2020-03-23

  Online published: 2020-05-11

Supported by

National Natural Science Foundation of China (61690210,61690213); Natural Science Foundation of Hunan Province(2019JJ50736)

Abstract

The active maneuver evasion technology has presented serious obstacles for exo-atmospheric interception. Assuming that the maneuvering acceleration vector of the target is perpendicular to the Line of Sight (LOS), and that the formation of the vector is arbitrary and bounded, this paper analyzes the capture region of the Realistic True Proportional Navigation (RTPN) guidance law against the arbitrarily maneuvering target. The selection range of the navigation gain is first derived, which guarantees that the commanded acceleration of RTPN does not surpass the maneuverability limitation of the interceptor durin g the guidance process. After that, based on the inequality analysis technique, the capture region of the RTPN against the arbitrarily maneuvering target is obtained without considering the overload saturation of the interceptor. A more practical capture region of the RTPN against the arbitrarily maneuvering target is then achieved considering the maneuverability limitation of the interceptor. Finally, the theoretical findings are demonstrated by numerical simulation examples.

Cite this article

BAI Zhihui , LI Kebo , SU Wenshan , CHEN Lei . Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(8) : 323947 -323947 . DOI: 10.7527/S1000-6893.2020.23947

References

[1] SHNEYDOR N A. Missile guidance and pursuit-kinematics, dynamics and control[M]. Chichester:Horwood Publishing, 1998.
[2] 程国采. 战术导弹导引方法[M]. 北京:国防工业出版社, 1996. CHENG G C. Tactical missile guidance method[M]. Beijing:National Defense Industry Publishing, 1996(in Chinese).
[3] YANG C D, YANG C C. A unified approach to proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2):557-567.
[4] OH J H, HA I J. Capturability of the three-dimensional pure PNG law[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2):491-503.
[5] OH J H. Solving a nonlinear output regulation problem:Zero miss distance of pure PNG[J]. IEEE Transactions on Automatic Control, 2002, 47(1):169-173.
[6] LI K B, SHIN H S, TSOURDOS A, et al. Capturability of 3D PPN against lower-speed maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019,56(1):711-722.
[7] GHOSE S, GHOSE D, RAHA S. Capturability analysis of a 3D Retro-PN guidance law for higher speed nonmaneuvering targets[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1864-1874.
[8] GHOSH S, GHOSE D, RAHA S. Capturability of augmented pure proportional navigation guidance against time-varying target maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5):1446-1461.
[9] GHOSE S, GHOSE D, RAHA S. Composite guidance for impact angle control against higher speed targets[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):98-117.
[10] 周觐, 雷虎民, 侯峰,等. 拦截高速目标的比例与反比例导引捕获区分析[J]. 宇航学报, 2018, 39(9):1003-1012(in Chinese). ZHOU J, LEI H M, HOU F, et al. Capture region analysis of proportional navigation and retro-proportional navigation guidance for hypersonic target interception[J]. Journal of Astronautics, 2018, 39(9):1003-1012.
[11] 王荣刚, 唐硕. 拦截高速运动目标广义相对偏置比例制导律[J]. 西北工业大学学报, 2019, 37(4):682-690. WANG R G, TANG S. Intercepting higher-speed targets using generalized relative biased proportional navigation[J]. Journal of Northwestern Polytechnical University, 2019, 37(4):682-690(in Chinese).
[12] GHOSE D. Capture region for true proportional navigation guidance with nonzero miss-distance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3):627-628.
[13] GHOSE D. True proportional navigation with maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1):229-237.
[14] LI K B, LIANG Y G, SU W S, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception[J]. Science China Technological Sciences, 2018, 61(8):1161-1174.
[15] YUAN P J, CHERN J S. Solution of true proportional navigation for maneuvering and non-maneuvering target[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(1):268-271.
[16] DHAR A, GHOSE D. Capture region for a realistic TPN guidance law[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3):995-1003.
[17] LI K B, SU W S, CHEN L. Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach[J]. Aerospace Science and Technology, 2017, 69(10):333-341.
[18] GHOSE D. On the generalization of true proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2):545-555.
[19] YUAN P J, HSUT S C. Exact closed-form solution of generalized proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5):963-966.
[20] YUAN P J, HSUT S C. Solutions of generalized proportional navigation with maneuvering and nonmaneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 30(1):469-474.
[21] YUAN P J, CHERN J S. Ideal proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(2):1161-1165.
[22] LI K B, ZHANG T T, CHEN L. Ideal proportional navigation for exo-atmospheric interception[J]. Chinese Journal of Astronautics, 2013, 26(4):976-985.
[23] 王婷, 周军. 三维理想比例导引律的捕获区域分析[J]. 西北工业大学学报, 2007, 25(1):83-86. WANG T, ZHOU J. Capture region of 3D ideal proportional navigation[J]. Journal of Northwestern Polytechnical University, 2007, 25(1):83-86(in Chinese).
[24] YUAN P J, CHEN M J, CHERN J S. Generalized ideal proportional navigation[J]. Proceedings of SPIE, Acquisition, Tracking, and Pointing XⅢ, 1999, 3692:150-161.
[25] TYAN F. Unified approach to missile guidance laws:A 3D extension[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1178-1199.
[26] TYAN F. Capture region of a GIPN guidance law for missile and target with bounded maneuverability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):201-213.
[27] MURTAUGH S A, CRIEL H E. Fundamentals of proportional navigation[J]. IEEE Spectrum, 1966, 3(12):75-85.
[28] HABLANI H B. Endgame guidance and relative navigation of strategic interceptors with delays[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1):82-94.
[29] 田源, 任章. 大气层外动能拦截器末段导引规律设计[J]. 宇航学报, 2009, 30(2):474-480. TIAN Y, REN Z. Design of guidance law for exo-atmospheric interceptor during its terminal course[J]. Journal of Astronautics, 2009, 30(2):474-480(in Chinese).
[30] 黎克波, 陈磊, 张翼. 真比例导引律的降维分析方法[J]. 国防科技大学学报, 2012, 34(3):1-5. LI K B, CHEN L, ZHANG Y. Dimension-reduction method of true proportional navigation guidance law[J]. Journal of National University of Defense Technology, 2012, 34(3):1-5(in Chinese).
[31] CHEN L, ZHANG B. Novel TPN control algorithm for exo-atmospheric intercept[J]. Journal of System Engineering and Electronics, 2009, 20(6):1290-1295.
[32] YUAN P J, HSUT S C. Rendezvous guidance with proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(2):409-411.
[33] LIU Y H, LI K B, LIANG Y G, et al. Novel augmented proportional navigation guidance law for mid-range autonomous rendezvous[J]. Acta Astronautica, 2019, 162:526-535.
[34] YANG C D, YANG C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3):569-577.
[35] GARAI T, MUKHOPADHYAY S, GHOSE D. Approximate closed-form solutions of realistic true proportional navigation guidance using the adomian decomposition method[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2009, 223(3):189-199.
[36] 雍恩米, 唐国金, 罗亚中. 弹道导弹中段机动突防制导问题的仿真研究[J]. 导弹与航天运载技术, 2005, 277:13-18. YONG E M, TANG G J, LUO Y Z. Research on maneuvering penetration guidance law of ballistic missile in middle-course flight by simulation method[J]. Missile and Space Vehicles, 2005, 277:13-18(in Chinese).
[37] 端军红, 高晓光. 卫星对动能拦截器的一种规避策略[J]. 宇航学报, 2011, 32(9):1953-1962. DUAN J H, GAO X G. An orbit maneuver strategy for the satellite based on evaluating the pregnable area of incoming kinetic kill vehicle[J]. Journal of Astronautics, 2011, 32(9):1953-1962(in Chinese).
[38] 王庆普. 大气层外弹道导弹弹头机动变轨突防策略研究[D]. 长沙:国防科技大学, 2011. WANG Q P. Research on the exo-atmospheric orbit maneuver anti-defense strategy of ballistic missile warhead[D]. Changsha:National University of Defense Technology, 2011(in Chinese).
[39] HA I J, HUR J S, KO M S, et al. Performance analysis of PNG laws for randomly maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(5):713-721.
[40] SONG S H, HA I J. A Lyapunov-like approach to performance analysis of 3-dimension pure PNG laws[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1):238-248.
[41] OH J H, HA I J. Capturability of the three-dimensional pure PNG law[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2):491-503.
[42] LI K B, SHIN H S, TSOURDOS A. Capturability of a sliding mode guidance law with finite time convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020,56(3):2312-2325.
[43] ZARCHAN P. Tactical and strategic missile guidance[M]. Reston:AIAA, 2012.
Outlines

/