Solid Mechanics and Vehicle Conceptual Design

Thermodynamics-based damage constitutive model and its application to damage analysis for HTPB/AP composite base bleed grain

  • WU Zhihui ,
  • NIU Gongjie ,
  • QIAN Jianping ,
  • LIU Rongzhong
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China

Received date: 2020-01-29

  Revised date: 2020-03-21

  Online published: 2020-04-25

Supported by

National Natural Science Foundation of China (11402248)

Abstract

To investigate tensile mechanical properties of HTPB/AP Composite Base Bleed Grain (CBBG), quasi-static (233-301 K, 8.3×10-5-8.3×10-1s-1) and impact (233-323 K, 1 200-8 000 s-1) loading experiments are conducted. Results show that the true stress-true strain curve has an obvious yield point under each experimental condition. The initial modulus, yield stress and the shape of the post-yield region of true stress-true strain curves all present clear dependence on temperature and the strain rate. In the framework of irreversible thermodynamics, the expressions of thermodynamic forces and evolution laws of internal variables are derived. With the additional initial modulus and the yield stress models, a novel viscoelastic-viscoplastic constitutive model considering damage evolution is proposed. Based on experimental data, the one-dimensional version of the constitutive model is used to identify the material parameters. The model validation shows that the proposed model can accurately present the initial viscoelasticity and post-yield behaviors of HTPB/AP CBBG over a wide range of temperature and strain rates. Damage evolution laws indicate that both the impact loading and low temperature boost damage development.

Cite this article

WU Zhihui , NIU Gongjie , QIAN Jianping , LIU Rongzhong . Thermodynamics-based damage constitutive model and its application to damage analysis for HTPB/AP composite base bleed grain[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 223855 -223855 . DOI: 10.7527/S1000-6893.2020.23855

References

[1] 陈劲操, 周彦煌, 郎明君. 药温测量中环境温度的作用及精确测定[J]. 弹道学报,2001,13(3):33-37. CHEN J C, ZHOU Y H, LANG M J. Ambient temperature action and precision detection in chamber temperature measurement[J]. Journal of Ballistics, 2001, 13(3):33-37(in Chinese).
[2] 常武军, 鞠玉涛, 王蓬勃. HTPB推进剂脱湿与力学性能的相关性研究[J]. 兵工学报,2012,33(3):261-266. CHANG W J, JU Y T, WANG P B. Research on correlation between dewetting and mechanical property of HTPB propellant[J]. Acta Armamentarii, 2012, 33(3):261-266(in Chinese).
[3] 韩龙, 许进升, 周长省. HTPB/IPDI复合固体推进剂细观界面率相关参数的反演识别研究[J]. 含能材料, 2016(10):928-935. HAN L, XU J S, ZHOU C S. Inverse identification of the rate-dependent micro interface parameters of HTPB/IPDI composite propellant[J]. Chinese Journal of Energetic Materials, 2016(10):928-935(in Chinese).
[4] KENDALL M J, SIVIOUR C R. Experimentally simulating high rate composite deformation in tension and compression:polymer bonded explosive simulant[J]. Journal of Dynamic Behavior of Materials, 2015,1(2):114-123.
[5] 胡少青. NEPE推进剂的粘-超弹本构模型及其应用研究[D]. 南京:南京理工大学, 2015:59-66. HU S Q. A visco-hyperelastic constitutive model for NEPE propellant and its application[D]. Nanjing:Nanjing University of Science and Technology, 2015:59-66(in Chinese).
[6] 沈超敏, 李斯宏. 颗粒材料破碎演化路径细观热力学机制[J]. 力学学报,2019,51(1):16-25. SHEN C M, LI S H. Evolution path for the particle breakage of granular materials:A micromechanical and thermodynamic insight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):16-25(in Chinese).
[7] RICHETON J, AHZI S, VECCHIO K S, et al. Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates[J]. International Journal of Solids and Structures, 2007, 44(24):7938-7954.
[8] JOHNSEN J, CLAUSEN A H, GRYTTEN F, et al. A thermo-elasto-viscoplastic constitutive model for polymers[J]. Journal of the Mechanics and Physics of Solids, 2019, 124:681-701.
[9] 刘志林, 王晓鸣, 姚文进, 等. 底排药的高应变率动态响应实验和仿真[J]. 含能材料, 2014, 22(4):529-534. LIU Z L, WANG X M, YAO W J, et al. Numerical simulation and mechanical behavior of base bleed grain at high strain rate[J]. Chinese Journal of Energetic Materials, 2014, 22(4):529-534(in Chinese).
[10] 武智慧, 牛公杰, 郝玉风, 等. HTPB复合底排药损伤本构模型研究[J]. 推进技术, 2019, 40(12):2848-2855. WU Z H, NIU G J, HAO Y F, et al. Research on damaged constitutive model for HTPB composite base bleed grain[J]. Journal of Propulsion Technology, 2019, 40(12):2848-2855(in Chinese).
[11] 武智慧, 牛公杰, 郝玉风, 等. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6):1810-1819. WU Z H, NIU G J, HAO Y F, et al. Research on modeling of compressive yield behavior for HTPB composite base bleed grain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6):1810-1819(in Chinese).
[12] ABDEL-WAHAB A A, ATAYA S, SILBERSCHMIDT V V. Temperature-dependent mechanical behaviour of PMMA:experimental analysis and modeling[J]. Polymer Testing, 2017, 58:86-95.
[13] BOYCE M C, SOCRATE S, LLANA P G. Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition[J]. Polymer, 2000,41(6):2183-2201.
[14] CHO H. Constitutive modeling of high strain rate elastomeric polymers:Mechanics of large deformation behavior of elastomeric copolymers:Resilience, dissipation, and constitutive modeling. elastomeric polymers with high rate sensitivity:Applications in blast, shock wave, and penetration mechanics[D]. 2015:115-137.
[15] SRIVASTAVA V, CHESTER S A, NICOLI M A, et al.A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition[J]. International Journal of Plasticity, 2010, 26(8):1138-1182.
[16] OKEREKE M I, LE C H, BUCKLEY C P. A new constitutive model for prediction of impact tests response of polypropylene[J]. EPJ Web of Conferences, 2012, 26:04031-04036.
[17] DREISTADT C, BONNET A, CHEVRIER P, et al. Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions[J]. Materials and Design, 2009, 30(8):3126-3140.
[18] 张泷, 刘耀儒, 杨强, 等. 考虑损伤的内变量黏弹-黏塑性本构方程[J]. 力学学报, 2014, 46(4):572-581. ZHANG L, LIU Y R, YANG Q, et al. An internal state variable viscoelastic-viscoplastic constitutive equation with damage[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):572-581(in Chinese).
[19] WANG J, XU Y J, ZHANG W H, et al. A damage-based elastic-viscoplastic constitutive model for amorphous glassy polycarbonate polymers[J]. Materials and Design, 2016, 97:519-531.
[20] HUND J, NAUMANN J, SEELIG T. An experimental and constitutive modeling study on the large strain deformation and fracture behavior of PC/ABS blends[J]. Mechanics of Materials, 2018, 124:132-142.
[21] CHEN F, BALIEU R, KRINGOS N. Thermodynamics-based finite strain viscoelastic-viscoplastic model coupled with damage for asphalt material[J]. International Journal of Solids and Structures, 2017, 120:61-73.
[22] BALIEU R, LAURO F, BENNANI B, et al. A fully coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer[J]. International Journal of Plasticity, 2013, 51:241-270.
[23] ONIFADE I, BIRGISSON B, BALIEU R. Energy-based damage and fracture framework for viscoelastic asphalt concrete[J]. Engineering Fracture Mechanics, 2015,145:67-85.
[24] 刘新东, 郝际平. 连续介质损伤力学[M]. 北京:国防工业出版社, 2011:155-182. LIU X D, HAO J P. Continuum damage mechanics[M]. Beijing:National Defense Industry Press, 2011:155-182(in Chinese).
[25] 勒迈特. 损伤力学教程[M]. 倪金刚, 陶春虎, 李松年, 译. 北京:科学出版社,1996:122-144. LEMAITRE J. A course on damage mechanics[M]. NI J G, TAO C H, LI S N, translated. Beijing:Science Press, 1996:122-144(in Chinese).
[26] 王礼立.应力波基础[M]. 北京:国防工业出版社, 2010:148-153. WANG L L. Foundation of stress wave[M]. Beijing:National Defense Industry Press, 2010:148-153(in Chinese).
[27] POVOLO F, HERMIDA E B. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA[J]. Journal of Applied Polymer Science, 1995, 58(1):55-68.
[28] KRAIRI A, DOGHRI I. A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage[J]. International Journal of Plasticity, 2014, 60:163-181.
[29] AL-RUB R K A, TEHRANI A H, DARABI M K. Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites[J]. International Journal of Damage Mechanics, 2015, 24(2):198-224.
[30] 童心, 李龙, 马赛尔, 等. 冲击载荷下HTPB推进剂的热耗散[J]. 爆炸与冲击, 2018, 38(6):1255-1261. TONG X, LI L, MA S E, et al. Heat dissipation of HTPB propellant under impact loading[J]. Explosion and Shock Waves, 2018,38(6):1255-1261(in Chinese).
[31] SAFARI K H, ZAMANI J, GUEDES R M, et al. The effect of heat development on the constitutive modeling of amorphous polymers[J]. Mechanics of Time-Dependent Materials, 2016, 20(1):45-64.
Outlines

/