Special Topic of Starlight Navigation Technology

Development of space starlight measurement technology: Review

  • YUAN Li ,
  • WANG Miaomiao ,
  • WU Yanpeng ,
  • WANG Li ,
  • ZHENG Ran
Expand
  • 1. Beijing Institute of Control Engineering, Beijing 100190, China;
    2. Science and Technology on Space Intelligent Control Laboratory, Beijing 100190, China

Received date: 2019-12-11

  Revised date: 2020-02-24

  Online published: 2020-04-03

Supported by

National Natural Science Foundation of China (51905034, 11903004)

Abstract

Space starlight measurement technology plays a vital role in the implementation of various space missions of spacecraft. This paper briefly introduces the basic concept of space starlight measurement technology and summarizes the research progress of typical space starlight measurement sensors and their application technologies. By comparing the main technical indicators of the same type of sensors, this study evaluates the current research level and the gap between that of China and foreign countries. In addition, key problems such as low frequency error suppression and calibration, sub-arcsec dynamic precision measurement, and extraordinary precision inertial pointing measurement are discussed. Combined with the research progress and challenges of space starlight measurement technology, the development trend of the technology is proposed, along with the future key research directions such as high precision, high dynamics, multi-function and intellectualization.

Cite this article

YUAN Li , WANG Miaomiao , WU Yanpeng , WANG Li , ZHENG Ran . Development of space starlight measurement technology: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(8) : 623724 -623724 . DOI: 10.7527/S1000-6893.2020.23724

References

[1] VAN B, ROELOF W H. SIRTF autonomous star tracker[C]//IR Space Telescopes and Instruments, 2003.
[2] 郝云彩. 空间光学敏感器技术进展与应用[J]. 空间控制技术与应用, 2017, 43(4):9-18. HAO Y C. Technical progress and application of space optical sensor[J]. Aerospace Control and Application, 2017, 43(4):9-18(in Chinese).
[3] BROSS W. Development of an all-electronic star sensor with image dissector tube:NASA-TT-F-12646[R]. Washington,D.C.:NASA,1969.
[4] STANTON R H, HILL R E. A CCD star sensor for fine pointing control of spaceborne telescopes[C]//17th Aerospace Sciences Meeting, 1979.
[5] STANTON R H. CCD star tracker experience:Key results from Astro1 flight[C]//Space Guidance, Control, and Tracking, 1993.
[6] LIEBE C C. Star trackers for attitude determination[J]. Aerospace and Electronic Systems, 1995, 10(6):10-16.
[7] YADID P O, PAIN B, STALLER C, et al. CMOS active pixel sensor star tracker with regional electronic shutter[J]. IEEE Journal of Solid-State Circuits, 1997, 32(2):285-288.
[8] LIEBE C C. Accuracy performance of star trackers-A tutorial[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2):587-599.
[9] SCHMIDT U. Autonomous star tracker based on active pixel sensors[C]//5th International Conference on Space Optics, ESA SP-554, 2004:355-358.
[10] SCHMIDT U. ASTRO APS-the next generation Hi-Rel star tracker based on active pixel sensor technology[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005:1-10.
[11] SCHMIDT U, MICHEL K, AIREY S P. Active pixel sensor technology applied in autonomous star sensors-advantages and challenges[C]//Guidance and Control 2007:Proceedings of the 30th Annual AAS Rocky Mountain Guidance and Control Conference (AAS-VOL-128), 2007.
[12] LIEBE C C, ALKALAI L, DOMINGO G. Micro APS based star tracker[C]//Aerospace Conference Proceedings of IEEE, 2002.
[13] 张广军. 星图识别[M]. 北京:国防工业出版社, 2011:12-17. ZHANG G J. Star identification[M]. Beijing:National Defense Industry Press, 2011:12-17(in Chinese).
[14] 卢欣, 李春艳, 李晓, 等. 星光导航技术现状与发展综述[J]. 空间控制技术与应用, 2017, 43(4):1-8. LU X, LI C Y, LI X, et al. Current and development trends of starlight navigation technology[J]. Aerospace Control and Application, 2017, 43(4):1-8(in Chinese).
[15] SCHMIDT U, ELSTNER C, MICHEL K. ASTRO 15 star tracker flight experience and further improvements Towards the ASTRO APS star tracker[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2008.
[16] SCHMIDT U, FIKSEL T, KWIATKOWSKI A, et al. Autonomous star sensor ASTRO APS:flight experience on Alphasat[J]. CEAS Space Journal, 2015, 7(2):237-246.
[17] MINEC-DUB J, JACOB P, GUILLON D, et al. Protons robustness improvement for the SED 26 star tracker[C]//Proceedings of the 6th International ESA Conference on Guidance, 2006.
[18] BLARRE L, OUAKNINE J, ODDOS-MARCEL L. High accuracy Sodern star trackers:Recent improvements proposed on SED36 and HYDRA star trackers[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA 2006.
[19] OUAKNINE J, BLARRE L, ODDOS-MARCEL L, et al. Reduction of low frequency error for SED36 and APS based HYDRA star trackers[C]//International Conference on Space Optics-ICSO, 2006.
[20] MICHAELS D, SPEED J. Ball aerospace star tracker achieves high tracking accuracy for a moving star field[C]//2005 IEEE Aerospace Conference, 2005:1-7.
[21] VAN B, ROELOF W H. SIRTF autonomous star tracker[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4850:108-121.
[22] PIOT D, ODDOS-MAECEL L, GELIN B, et al. Hydra star tracker on-board spot-6[C]//36th Annual AAS Rocky Mountain Section Guidance and Control Conference, 2013.
[23] HUFFMAN K, SEDWICK R, STAFFORD J, et al. Designing star trackers to meet micro-satellite requirements[C]//SpaceOps 2006 Conference, 2006.
[24] ENRIGHT J, SINCLAIR D, FERNANDO C. COTS detectors for nanosatellite star trackers:A case study[C]//25th Annual AIAA/USU Conference on Small Satellites, 2011.
[25] CASSIDY L W. HDOS HD-1003 star tracker[C]//Proceedings of SPIE, Space Guidance, Control, and Tracking Ⅱ, 1995, 2466(1):93-99.
[26] SEGERT T, ENGELEN S, BUHL M, et al. Development of the pico star tracker ST-200-design challenges and road ahead[C]//25th Annual AIAA/USU, Conference on Small Satellites, 2011.
[27] DZAMBA T, ENRIGHT J, SINCLAIR D, et al. Success by 1000 improvements:flight qualification of the ST-16 star tracker[C]//28th Annual AIAA/USU, Conference on Small Satellites, 2014.
[28] MURUGANANDAN V A, PARK J H, LEE S, et al. Development of the arcsecond pico star tracker (APST)*[J]. Transactions of the Japan Society for Aeronautical & Space Sciences, 2017, 60(6):355-365.
[29] 天银星际. 天银星际和清华大学联合研发的PST3星敏感器随珠江一号遥感微纳卫星星座03组卫星成功发射入轨[EB/OL]. 北京:天银星际, 2019. (2019-09-19)[2019-11-27]. http://mp.weixin.qq.com/s/Msu3ozhty_RH6xcNfbtz2A. TY-Space. The PST3 star sensor jointly developed by TY-Space and Tsinghua University was successfully launched into orbit with the group 03 satellite of zhujiang-1 remote sensing micro nano satellite constellation[EB/OL]. Beijing:TY-Space, 2019. (2019-09-19)[2019-11-27].http://mp.weixin.qq.com/s/Msu3ozhty_RH6xcNfbtz2A (in Chinese).
[30] KATAKE A, BRUCCOLERI C. StarCam SGl00:A high update rate, high sensitivity stellar gyroscope for spacecraft[C]//Sensors, Cameras, and Systems for Industrial/Scientific Applications XI, 2010.
[31] HUTCHIN R A. Interferometric tracking device:USA, US8045178B2[P]. 2011-10-25.
[32] GEOFFREY M. Development and performance characterization of color star trackers[D]. Toronto:Ryerson University, 2013.
[33] DYJAK C P, HARRISON D C. Space-based visible surveillance experiment[C]//Proceedings in SPIE, 1991:42-56.
[34] SRIDHARAN R, FISHMAN T, ROBINSON E, et al. Mission planning for space based satellite surveillance experiments with the MSX[C]//Space Mission Operations and Ground Data Systems, 1994:295-303.
[35] SHARMA J, BAPOSCHKIN E M, BRAUN V C. Space-based space surveillance with the Space-based visible[J]. Journal of Guidance Control & Dynamics, 2000, 23(1):148-152.
[36] KANTSIPER B, CHENG A, REED C. The double asteroid redirection test mission[C]//2016 IEEE Aerospace Conference, 2016:1-7.
[37] FURNISS T. Orbital express ready to repair[J]. Flight International, 2004, 166(4944).
[38] MORRIS D, ALDCROFT T L, CAMERON R A, et al. Analysis of the Chandra x-ray observatory aspect camera PSF and its application to post-facto pointing aspect determination[C]//Proceedings of SPIE, Astronomical Data Analysis, 2001.
[39] ALDCROFT T L, KAROVSKA M, CRESITELLO-DITTMAR M, et al. Initial performance of the aspect system on the Chandra observatory:postfacto aspect reconstruction[C]//X-Ray Optics, Instruments, and Missions Ⅲ, 2000.
[40] DORLAND B N, DUDIK R P, DUGAN Z, et al.The joint milli-arcsecond pathfinder survey (JMAPS):mission overview and attitude sensing applications[C]//19th AAS/AIAA Space Flight Mechanics Meeting, 2009.
[41] GAUME R A, DORLAND B N. The joint milli-arcsecond pathfinder survey:introduction and applications[C]//AIAA SPACE 2009 Conference & Exposition, 2009.
[42] FEIN G F. Canada's sapphire provides another node for space debris monitoring[J]. Jane's International Defense Review, 2014,47(3).
[43] BOLLNER M. Star identification techniques used for attitude determination and control of the X-ray satellite Rosat[C]//Guidance Navigation and Control Conference, 1987:1255-1263.
[44] GUCKENBIEHL F H. Rosat mission operations system[C]//AIAA Aerospace Sciences Meeting and Exhibit, 2013.
[45] SCHUTZ B E, ZWALLY H J, SHUMAN C A, et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 2005, 32(21):L21S01-04.
[46] BAE S, WEBB C, SCHUTZ B. GLAS PAD calibration using laser reference sensor data[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence, 2004.
[47] ABDALATI W, ZWALLY H J, BINDSCHADLER R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751.
[48] ECSS Secretariat. Star sensor terminology and performance specification:ECSS-E-ST-60-20C[S]. Noordwijk:ESA, 2008.
[49] 卢欣, 武延鹏, 钟红军, 等. 星敏感器低频误差分析[J]. 空间控制技术与应用, 2014, 40(2):1-7. LU X, WU Y P, ZHONG H J, et al. Low frequency error analysis of star sensor[J]. Aerospace Control and Application, 2014, 40(2):1-7(in Chinese).
[50] TAKANORI I, HIROKI H, TAKESHI Y, et a1. Precision attitude determination for the advanced land observing satellite(ALOS):design, verification, and on orbit calibration[C]//AIAA Navigation and Control Conference and Exhibit, 2007:1-18.
[51] WINKLER S, WIEDERMANN G, GOCKEL W. High accuracy onboard attitude estimation for the GMES Sentinel-2 satellite:concept, design, and first results[C]//AIAA Navigation and Control Conference and Exhibit, 2008:1-15.
[52] 李贞, 金涛, 李婷, 等. 敏捷光学卫星无控几何精度提升途径探讨[J]. 航天器工程, 2016, 25(6):25-31. LI Z, JIN T, LI T, et al. Discussion of Geo-location accuracy increasing methods of agile satellite without ground control points[J]. Spacecraft Engineering, 2016, 25(6):25-31(in Chinese).
[53] 熊凯, 宗红, 汤亮. 星敏感器低频误差在轨校准方法研究[J]. 空间控制技术与应用, 2014, 40(3):8-13. XIONG K, ZONG H, TANG L. On star sensor low frequency error in-orbit calibration method[J]. Aerospace Control and Application, 2014, 40(3):8-13(in Chinese).
[54] 赵琳, 谢睿达, 刘源, 等. 星敏感器低频误差与陀螺漂移离线校正方法[J]. 航空学报, 2017, 38(5):155-158. ZHAO L, XIE R D, LIU Y, et al. Offline calibration method of low frequency error of star sensor and gyroscope drift.[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):155-158(in Chinese).
[55] 雷琦, 龚志辉, 林雕, 等. AEKF在星敏感器低频误差补偿中的应用[J]. 测绘科学技术学报, 2016, 33(3):252-257. LEI Q, GONG Z H, LIN D, et al. The application of AEKF in the compensation of low frequency error of star sensor[J]. Journal of Geomatics Science and Technology, 2016, 33(3):252-257(in Chinese).
[56] 庞博, 黎康, 汤亮, 等. 星敏感器误差分析与补偿方法[J]. 空间控制技术与应用, 2017, 43(1):17-24. PANG B, LI K, TANG L, et al. Error analysis and compensation for star sensor[J]. Aerospace Control and Application, 2017, 43(1):17-24(in Chinese).
[57] 庞博, 李果, 黎康, 等. 一种基于地标的星敏感器低频误差在轨校正方法[J]. 航天器工程, 2018, 27(3):79-85. PANG B, LI G, LI K, et al. On-orbit calibration method of star sensor's low frequency error based on landmark[J]. Space Craft Engineering, 2018, 27(3):79-85(in Chinese).
[58] 熊凯, 汤亮, 刘一武. 基于地标信息的星敏感器低频误差标定方法[J]. 空间控制技术与应用, 2012, 38(3):11-15. XIONG K, TANG L, LIU Y W. Calibration of star senor's low frequency error based on landmark information.[J]. Aerospace Control and Application, 2012, 38(3):11-15(in Chinese).
[59] 隋杰, 程会艳, 余成武, 等. 星敏感器光轴热稳定性仿真分析方法[J]. 空间控制技术与应用, 2017, 43(4):37-41. SUI J, CHENG H Y, YU C W, et al. A thermal stability analysis and simulation method for boresight axis of star sensor[J]. Aerospace Control and Application, 2017, 43(4):37-41(in Chinese).
[60] 陈建峰, 余成武, 程会艳, 等. 基于Bipod结构的星敏感器遮光罩安装结构优化设计[J]. 空间控制技术与应用, 2017, 43(4):68-78. CHEN J F, YU C W, CHENG H Y, et al. An optimal design of star tracker baffle based on Bipod structure[J]. Aerospace Control and Application, 2017, 43(4):68-78(in Chinese).
Outlines

/