Material Engineering and Mechanical Manufacturing

Interfacial microstructure and mechanical properties of high Nb containing TiAl alloy and GH3536 superalloy brazed using amorphous BNi-2 filler

  • HU Shengpeng ,
  • LI Wenqiang ,
  • FU Wei ,
  • SONG Xiaoguo ,
  • LONG Weimin ,
  • CAO Jian
Expand
  • 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
    2. Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China;
    3. State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China

Received date: 2020-01-16

  Revised date: 2020-02-03

  Online published: 2020-03-26

Supported by

National Natural Science Foundation of China (51905125, U1737205);Shandong Provincial Natural Science Foundation(ZR2019BEE031)

Abstract

High Nb containing TiAl alloy and GH3536 superalloy is brazed successfully by using amorphous BNi-2 filler metal and sound joints were obtained. The typical interfacial microstructure of the brazed joint consists of TAN substrate/B2+τ3/τ4+(Ni-Ti)-B/γ+(Ni-Ti)-B+CrB+G phase/GH3536 superalloy. The effects of brazing temperature on the interfacial microstructure of joints are then investigated. The results show that the diffusion of element B in BNi-2 and the dissolution of the elements from GH3536 alloy into the liquid brazing alloy play a crucial role in the evolution of the interfacial microstructure. With the increase of brazing temperature, the diffusion zone IV gradually disappears and the joint changes from four areas to three. It appears that the thickened τ3/τ4 compound layer and the brazing seam coarsened the black CrB phase, reducing the content of small dots (Ni, Ti)-B. After 10 min at 1160 ℃, the optimal shear strength of the joints at room temperature and high temperature (700 ℃) is about 106.8 MPa and 76.2 MPa, respectively, decreasing by about 28.6%. All the brazed joints exhibit a brittle fracture mode after the shear test. The process of joint formation can be divided into four stages: solid phase diffusion, liquid phase formation, isothermal diffusion solidification, and residual liquid phase precipitation.

Cite this article

HU Shengpeng , LI Wenqiang , FU Wei , SONG Xiaoguo , LONG Weimin , CAO Jian . Interfacial microstructure and mechanical properties of high Nb containing TiAl alloy and GH3536 superalloy brazed using amorphous BNi-2 filler[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 423846 -423846 . DOI: 10.7527/S1000-6893.2020.23846

References

[1] LIU D, SONG Y Y, SHI B, et al. Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler[J]. Journal of Materials Science & Technology, 2018, 34(10):1843-1850.
[2] ZHANG L X, SUN Z, XUE Q, et al. Transient liquid phase bonding of IC10 single crystal with GH3039 superalloy using BNi2 interlayer:Microstructure and mechanical properties[J]. Materials & Design, 2016, 90:949-957.
[3] CLEMENS H, MAYER S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013, 15(4):191-215.
[4] WU X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10-11):1114-1122.
[5] YAO C F, LIN J N, WU D X, et al. Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts[J]. Chinese Journal of Aeronautics, 2018, 31(4):826-836.
[6] SI X Q, ZHAO H Y, CAO J, et al. Brazing high Nb containing TiAl alloy using Ti-28 Ni eutectic brazing alloy:Interfacial microstructure and joining properties[J]. Materials Science and Engineering:A, 2015, 636:522-528.
[7] SONG X G, BEN B Y, HU S P, et al. Vacuum brazing high Nb-containing TiAl alloy to Ti60 alloy using Ti-28 Ni eutectic brazing alloy[J]. Journal of Alloys and Compounds, 2017, 692:485-491.
[8] JALILVAND V, OMIDVAR H, SHAKERI H R, et al. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy[J]. Materials Characterization, 2013, 75:20-28.
[9] PANG M, YU G, WANG H H, et al. Microstructure study of laser welding cast nickel-based superalloy K418[J]. Journal of Materials Processing Technology, 2008, 207(1-3):271-275.
[10] ŁYCZKOWSKA K, MICHALSKA J. Studies on the corrosion resistance of laser-welded Inconel 600 and Inconel 625 nickel-based superalloys[J]. Archives of Metallurgy and Materials, 2017, 62(2):653-656.
[11] HAUSCHILDT K, STARK A, SCHELL N, et al. The transient liquid phase bonding process of a γ-TiAl alloy with brazing solders containing Fe or Ni[J]. Intermetallics, 2019, 106:48-58.
[12] HAN G H, BIAN H, ZHAO H Y, et al. Interfacial microstructure and mechanical properties of TZM alloy and ZrC particle reinforced tungsten composite joint brazed using Ti-61 Ni filler[J]. Journal of Alloys & Compounds, 2018, 747:266-275.
[13] SEQUEIROS E W, GUEDES A, Pinto A M P, et al. Microstructure and Strength of γ-TiAl Alloy/Inconel 718 Brazed Joints[J]. Materials Science Forum, 2012, 730-732:835-840.
[14] 陈波, 熊华平, 毛唯, 等. 采用Ti-Zr-Cu-Ni真空钎焊Ti3Al/Ti3Al和Ti3Al/GH536接头组织及性能[J]. 航空材料学报, 2010, 30(5):35-38. CHEN B, XIONG H P, MAO W, et al. Microstructure and properties of Ti3Al/Ti3Al and Ti3Al/GH536 joints using Ti-Zr-Cu-Ni brazing filler[J]. Journal of Aeronautical Materials, 2010, 30(5):35-38(in Chinese).
[15] LI H X, WEI H M, HE P, et al. Effects of alloying elements in GH99 superalloy on microstructure evolution of reactive brazing TiAl/GH99 joints[J]. Intermetallics, 2013, 34:69-74.
[16] MA Q S, LI Y J, WU N, et al. Microstructure of vacuum-brazed joints of super-Ni/NiCr laminated composite using nickel-based amorphous filler metal[J]. Journal of Materials Engineering & Performance, 2013, 22(6):1660-1665.
[17] BOTSTEIN O, SCHWARZMAN A, RABINKIN A. Induction brazing of Ti-6Al-4V alloy with amorphous 25Ti-25Zr-50Cu brazing filler metal[J]. Materials Science & Engineering A, 1996, 206(1):14-23.
[18] SCHUSTER J C, PAN Z, LIU S, et al. On the constitution of the ternary system Al-Ni-Ti[J]. Intermetallics, 2007, 15(9):1257-1267.
[19] GUPTA K P. The Cr-Ni-Si (Chromium-Nickel-Silicon) system[J]. Journal of Phase Equilibria & Diffusion, 2010, 38(9):523-528.
[20] 路文江, 慕建堂. 镍基钎料接头中硼的扩散行为[J]. 兰州理工大学学报, 1996, 22(2):11-16. LU W J, MU J T. Diffusion behavior of boron in nickel-based brazed welding joint[J]. Journal of Gansu University of Technology, 1996, 22(2):11-16(in Chinese).
[21] NARITA T, IZUMI T, YATAGAI M, et al. Sulfidation processing and Cr addition to improve oxidation resistance of TiAl intermetallics in air at 1173 K[J]. Intermetallics, 2000, 8(4):371-379.
[22] SCHUSTER J C, ZHU P, LIU S, et al. On the constitution of the ternary system Al-Ni-Ti[J]. Intermetallics, 2007, 15(9):1257-1267.
Outlines

/