Material Engineering and Mechanical Manufacturing

Hole diameter deviation in helical milling of titanium alloy

  • DONG Zhigang ,
  • GAO Yu ,
  • KANG Renke ,
  • YANG Guolin ,
  • BAO Yan
Expand
  • School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2020-01-15

  Revised date: 2020-02-03

  Online published: 2020-03-26

Supported by

National Key Research and Development Project (2017YFB1301701); Scientific Research Project of Shanghai Aircraft Manufacturing Co., Ltd. (COMAC-SFGS-2018-2783)

Abstract

Helical milling is a newly developed hole-making technology in aircraft assembly. The radial cutting force generated in the process of helical milling causes deflection deformation of the tool, resulting in hole diameter deviation. To overcome this problem, the hole diameter deviation test of helical milling is performed on titanium alloy, and the effect of different processing parameters including feed direction on hole diameter deviation is analyzed. Based on the kinematic principle of helical milling, the material removal mechanism and the radial cutting force direction are studied, and variation rules and the formation reasons of hole diameter deviation are analyzed in different feed directions, which is further verified by the cutting force test of helical milling. In addition, the shape of undeformed chip and the change of radial cutting force were examined with different processing parameters, followed by the study of the parameter effect on the change trend of the hole diameter. Results show that the tool is affected by radial cutting force in directions away from the hole center, leading to deflection deformation away from the hole center, and further resulting in hole diameter being larger than the nominal hole diameter in a clockwise feed direction. The opposite is true when the feed direction is counterclockwise. The hole diameter deviation is aggravated with the increase of feed speed and pitch, while weakened with that of the cutting speed.

Cite this article

DONG Zhigang , GAO Yu , KANG Renke , YANG Guolin , BAO Yan . Hole diameter deviation in helical milling of titanium alloy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 423841 -423841 . DOI: 10.7527/S1000-6893.2020.23841

References

[1] 王黎明, 冯潼能. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008(11):42-45. WANG L M, FENG T N. Application of digital automatic drill-riveting technology in aircraft manufacture[J]. Aeronautical Manufacturing Technology, 2008(11):42-45(in Chinese).
[2] 康仁科, 杨国林, 董志刚, 等. 飞机装配中的先进制孔技术与装备[J]. 航空制造技术, 2016, 59(10):16-24. KANG R K, YANG G L, DONG Z G, et al. Advanced hold machining technology and equipment for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2016, 59(10):16-24(in Chinese).
[3] 刘刚, 陈祖朋, 高凯晔, 等. 基于机器人载体的螺旋铣制孔精度研究[J]. 应用基础与工程科学学报, 2015, 23(5):1047-58. LIU G, CHEN Z P, GAO K Y, et al. Borehole accuracy study on a robotic orbital drilling system[J]. Journal of Basic Science and Engineering, 2015, 23(5):1047-58(in Chinese).
[4] 杨国林, 董志刚, 康仁科, 等. 螺旋铣孔技术研究进展[J]. 航空学报, 2020,41(7):623311. YANG G L, DONG Z G, KANG R K, et al. Research progress of helical milling[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(7):623311(in Chinese).
[5] 王欢, 董志刚, 康仁科, 等. 钛合金螺旋铣孔的切削力和切削温度试验研究[J]. 航空制造技术, 2016(9):91-97. WANG H, DONG Z G, KANG R K, et al. Experimental investigation of cutting force and cutting temperature on helical milling of titanium alloy[J]. Aeronautical Manufacturing Technology, 2016(9):91-97(in Chinese).
[6] BRINKSMEIER E, FANGMANN S, RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):57-60.
[7] VOSS R, HENERICHS M, KUSTER F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP)[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):137-140.
[8] SADEK A, MESHREKI M, ATTIA M H. Characterization and optimization of orbital drilling of woven carbon fiber reinforced epoxy laminates[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1):123-126.
[9] QIN X D, SUN X T, WANG Q, et al. Comparative study on helical milling and drilling of Ti-6Al-4V[J]. Key Engineering Materials, 2012, 499:200-204.
[10] PEREIRA R B D, BRANDÃO L C, PAIVA A P D, et al. A review of helical milling process[J]. International Journal of Machine Tools and Manufacture, 2017, 120:27-48.
[11] DENKENA B, BOEHNKE D, DEGE J H. Helical milling of CFRP-titanium layer compounds[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(2):64-69.
[12] ZHOU L, KE Y L, DONG H Y, et al. Hole diameter variation and roundness in dry orbital drilling of CFRP/Ti stacks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):811-824.
[13] 陈祖朋. 难加工材料螺旋铣孔加工质量研究[D]. 杭州:浙江大学, 2015. CHEN Z P. Study on hole-making quality for hard-machining material in orbital drilling[D]. Hangzhou:Zhejiang University, 2015(in Chinese).
[14] 李士鹏, 田利成, 秦旭达, 等. 基于螺旋铣孔柔性切削力建模的孔径误差补偿[J]. 天津大学学报(自然科学与工程技术版), 2017,50(2):147-153. LI S P, TIAN L C, QIN X D, et al. Diameter deviation compensation based on flexible cutting force model in hole helical milling process[J]. Journal of Tianjin University (Science and Technology), 2017, 50(2):147-153(in Chinese).
[15] 潘泽民. CFRP/Ti复合结构螺旋铣孔自动控制技术研究[D]. 杭州:浙江大学, 2016. PAN Z M. Study on automatic control technology of hecal milling on CFRP/Ti composite structures[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
[16] 吉春辉, 田利成, 秦旭达, 等. 钛合金螺旋铣孔与传统钻孔的加工质量对比[J]. 机械工程材料, 2015, 39(5):9-11. JI C H, TIAN L C, QIN X D, et al. Processing quality comparison of holes in titanium alloy made by helical milling and traditional drilling[J]. Materials for Mechanical Engineering, 2015, 39(5):9-11(in Chinese).
[17] BRINKSMEIER E, FANGMANN S, MEYER I. Orbital drilling kinematics[J]. Production Engineering, 2008, 2(3):277-283.
[18] 许君. C/E复合材料螺旋铣孔加工试验研究[D]. 大连:大连理工大学, 2017. XU J. The Research on helical milling experiments of C/E composites[D]. Dalian:Dalian University of Technology, 2017(in Chinese).
[19] 谢海龙, 董志刚, 康仁科, 等. C/E复合材料螺旋铣孔切屑形状与切削温度研究[J]. 北京航空航天大学学报, 2017,43(2):328-334. XIE H L, DONG Z G, KANG R K, et al. Chip shape and cutting temperature of helical milling of C/E composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017,43(2):328-334(in Chinese).
[20] OZTURK O M, KILIC Z M, ALTINTAS Y. Mechanics and dynamics of orbital drilling operations[J]. International Journal of Machine Tools and Manufacture, 2018, 129:37-47.
[21] LI Z L, DING Y, ZHU L M. Accurate cutting force prediction of helical milling operations considering the cutter runout effect[J]. International Journal of Advanced Manufacturing Technology, 2017, 92:4133-44.
[22] WANG H Y, QIN X D, REN C Z, et al. Prediction of cutting forces in helical milling process[J]. International Journal of Advanced Manufacturing Technology, 2012, 58:849-859.
[23] REY P A, LEDREF J, SENATORE J, et al. Modelling of cutting forces in orbital drilling of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2016, 106:75-88.
[24] DENKENA B, NESPOR D, REHE M, et al. Process force prediction in orbital drilling of TiAl6V4[C]//9th International Conference on Advanced Manufacturing Systems and Technology, 2016:113-128.
Outlines

/