The results of the airfoil aerodynamic/stealth design with different numbers of design variables are compared and analyzed, revealing considerable impact of the design variable configuration on the results. Simple increase in the design variables cannot guarantee ideal results. This paper proposes an adaptive parameterization method for surrogate-based optimization. Using the global sensitivity analysis method and the element effect method, it obtains the sensitive information about the objectives in the design space to add design variables. The knot insertion algorithm is adopted to reconstruct samples in the high-dimensional space, avoiding the computational cost of resampling. Compared with the traditional fixed-dimensional method, the adaptive parameterization method expands the dimension in the sensitive area of the design space. The expanded design space can more accurately describe the shape and reflect the changing trend of the objective function. Therefore, the proposed method can significantly improve the quality and efficiency of optimization.
ZHANG Wei
,
GAO Zhenghong
,
ZHOU Lin
,
XIA Lu
. Adaptive parameterization method for surrogate-based global optimization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(10)
: 123815
-123815
.
DOI: 10.7527/S1000-6893.2020.23815
[1] ROMAN D, ALLEN J, LIEBECK R. Aerodynamic design challenges of the blended-wing-body subsonic transport[C]//18th Applied Aerodynamics Conference. Reston:AIAA, 2000.
[2] ROMAN D, SEAN W. Aerodynamics of high-subsonic blended-wing-body configurations[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[3] LIEBECK R H. Design of the blended wing body subsonic transport[J].Journal of Aircraft, 2012, 41(1):10-25.
[4] KROO I. Innovations in aeronautics[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004.
[5] 张彬乾, 罗烈, 陈真利, 等. 飞翼布局隐身翼型优化设计[J].航空学报, 2014,35(4):957-967. ZHANG B Q,LUO L, CHEN Z L, et al. On stealth airfoil design for flying wing configuration[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(4):957-967(in Chinese).
[6] 王超, 高正红, 张伟, 等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J].航空学报, 2018,39(7):40-58. WANG C,GAO Z H,ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J].Acta Aeronautica et Astronautica Sinica, 2018,39(7):40-58(in Chinese).
[7] QUEIPO N V, HAFTKA R T, WEI S, et al. Surrogate-based analysis and optimization[J].Progress in Aerospace Sciences, 2005, 41(1):1-28.
[8] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J].Progress in Aerospace Sciences, 2009,45(1):50-79.
[9] VINH H, DAM C P V, DWYER H A. Shape optimization for aerodynamic efficiency and low observability[C]//Fluid Dynamic, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993.
[10] RAINO A E, TOIVANEN M J, PERIAUX J. Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms[J].International Journal for Numerical Methods in Fluids, 1999, 30(2):149-159.
[11] LEE D S, GONZALEZ L F, SRINIVAS K, et al. Robust evolutionary algorithms for UAV/UCAV aerodynamic and RCS design optimization[J].Computers & Fluids, 2008,37(5):547-564.
[12] LEE D S, GONZALEZ L F, SRINIVAS K, et al. Aerodynamic/RCS shape optimization of unmanned aerial vehicles using hierarchical asynchronous parallel evolutionary algorithms[C]//Applied Aerodynamic Conference. Reston:AIAA, 2006.
[13] ZHANG Y. Multi-round surrogate-based optimization for benchmark aerodynamic design problems[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[14] 李静, 高正红, 黄江涛, 等. 基于CST参数化方法气动优化设计研究[J].空气动力学学报,2012,30(4):443-449. LI J,GAO Z H,HUANG J T, et al. Aerodynamic optimization system based on CST technique[J].Acta Aerodynamica Sinica, 2012, 30(4):443-449(in Chinese).
[15] 李焦赞, 高正红. 多变量气动设计问题分层协同优化[J].航空学报, 2013, 34(1):58-65. LI J Z,GAO Z H. Multivariable aerodynamic design based on multilevel collaborative optimization[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(1):58-65(in Chinese).
[16] DESIDERI J A, MAJD A B E, JANKA A. Nested and self-adaptive Bezier parameterizations for shape optimization[J].Journal of Computational Physics, 2007, 224(1):117-131.
[17] MASTERS D A, TAYLOR N J, RENDALL T, et al. Progressive subdivision curves for aerodynamic shape optimization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[18] ANDERSON G R, NEMEC M, AFTMSMIS M J. Aerodynamic shape optimization benchmarks with error control and automatic parameterization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[19] HAN X, ZINGG D W. An adaptive geometry parametrization for aerodynamic shape optimization[J].Optimization & Engineering, 2014,15(1):69-91.
[20] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output design and estimator for the total sensitivity index[J].Computer Physics Communications, 2010, 181(2):259-270.
[21] MORRIS M D. Factorial sampling plans for preliminary computational experiments[J].Technometrics, 1991, 33(2):161-174.
[22] BRAIBANT V, FLEURY C. Shape optimal design using B-splines[J].Computer Methods in Applied Mechanics and Engineering, 1984, 44(3):247-267.
[23] KULFAN B. A universal parametric geometry representation method-CST[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[24] HICKS R M, HENNE P A. Wing design by numerical optimization[J].Journal of Aircraft, 1978, 15(7):407-412.
[25] MASTERS D A, POOLE D J, TAYLOR N J, et al. Impact of shape parameterization on aerodynamic optimization of benchmark problem[J].Journal of Aircraft, 2017, 54(6):2242-2256.
[26] BOEHM W. Inserting new knots into B-spline curves[J].Computer-Aided Design,1980,12(4):199-201.
[27] KNOTT E F. A Progression of high-frequency RCS prediction techniques[J].Proceedings of the IEEE, 1985, 73(2):252-264.
[28] SEARS W. Flying-wing airplanes-The XB-35/YB-49 program[C]//The Evolution of Aircraft Wing Design, Proceedings of the Symposium. Reston:AIAA, 1980.