Review

Ultrasonic rolling technology in surface strengthening: Progress in research and applications

  • ZHAO Bo ,
  • JIANG Yan ,
  • BIE Wenbo
Expand
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Received date: 2019-11-26

  Revised date: 2020-03-30

  Online published: 2020-03-26

Supported by

National Natural Science Foundation of China (U1604255,51475148)

Abstract

Ultrasonic Surface Rolling Process (USRP) which combines material removal of ultrasonic machining and that of traditional rolling is a mechanical type of nontraditional hybrid machining technology. It has significant advantages in the improvement of surface integrity, anti-fatigue, corrosion resistance, and wear resistance. Since the invention of USPR, a large number of studies on processing technologies and mechanisms have been conducted. It is also extensively applied to important metal materials and key parts. In this paper, the development of the surface rolling equipment at home and abroad is firstly summarized; then, main research methods of the URSP mechanism (theoretical method, finite element method, and experimental method) are discussed, with their advantages and disadvantages pointed out; the impacts of USRP on surface integrity (including microstructure, surface morphology, microhardness, residual stress) and on fatigue resistance (including the other properties) improvement are also summarized. Finally, future research and development tendency of USRP are predicted, providing reference for the ultrasonic rolling of curved surface.

Cite this article

ZHAO Bo , JIANG Yan , BIE Wenbo . Ultrasonic rolling technology in surface strengthening: Progress in research and applications[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(10) : 23685 -023685 . DOI: 10.7527/S1000-6893.2020.23685

References

[1] 赵婧, 夏伟, 李风雷, 等. 滚压表面强化机理的研究现状与进展[J].工具技术, 2010, 44(11):3-8. ZHAO J, XIA W, LI F L, et al. Research status and developing tendency of burnishing mechanism[J].Tool Engineering, 2010, 44(11):3-8(in Chinese).
[2] 李鹏涛, 赵波, 赵重阳,等. 超声局部共振系统设计与试验研究[J].兵工学报, 2019, 40(8):1747-1755. LI P T, ZHAO B, ZHAO C Y, et al. Design and experimental study of ultrasonic local resonance system[J].Acta Armamentarii 2019, 40(8):1747-1755(in Chinese).
[3] SHAMOTO E, SUZUKI N, MORIWAKI T, et al. De-velopment of ultrasonic elliptical vibration controller for elliptical vibration cutting[J].CIRP Annals-Manufacturing Technology, 2002, 51(1):327-330.
[4] IBRAHIM A A, RABBO S M A, El-AXIR M H, et al. Center rest balls burnishing parameters adaptation of steel components using fuzzy logic[J].Journal of Materials Processing Technology, 2009, 209(5):2428-2435.
[5] JUIJERM P, ALTENBERGE R. Fatigue performance enhancement of steels using mechanical surface treat-ments[J].Journal of Metals, 2017, 17(1):59-65.
[6] TIAN Y, SHIN Y C. Laser-assisted burnishing of met-als[J].International Journal of Machine Tools and Manufacture, 2007, 47(1):14-22.
[7] 鲁金忠, 季仕杰, 吴刘军, 等. 激光冲击-超声滚压复合工艺对AZ91D镁合金力学性能的影响[J]. 吉林大学学报(工学版), 2020,50(4):1301-1309. LU J Z, JI S J, WU L J, et al. Effect of laser shock peening and ultrasound surface rolling combined processes on mechanical properties of AZ91D Mg alloy[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(4):1301-1309(in Chinese).
[8] 苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J].航空学报, 2019, 40(12):423096. GOU L, MA Y E, DU Y, et al. Residual stress profile and fatigue of 7075 aluminum plate with groove under laser shot peening[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423096(in Chinese).
[9] 王海波. 304不锈钢的电脉冲辅助车削与声电耦合表面加工研究[D]. 北京:清华大学, 2016:26-34. WANG H B. Research on the electropulsing assisted turning and ultrasonic-electropulsing coupling surface process for the 304 stainless steel[D]. Beijing:Tsinghua University, 2016:26-34(in Chinese).
[10] 赵波, 别文博, 王晓博, 等. 纵-扭复合超声钻削TC4钛合金振动系统设计与试验[J].航空学报, 2020, 41(1):423207. ZHAO B, BIE W B, WANG X B, et al. Design and experimental investigation on vibration system of longitudinal-torsional ultrasonic drilling TC4 titanium alloy[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):423207(in Chinese).
[11] 白音胡, 柴铭丽, 杨学军, 等. 超声滚压处理提高30CrNiMo8钢疲劳性能可行性的研究[J].制造技术与机床, 2019(10):88-92. BAI Y H, CHAI M L, YANG X J, et al. Study on feasibility of improving fatigue properties of 30CrNiMo8 steel by ultrasonic rolling process[J].Technology and Manufacture, 2019(10):88-92(in Chinese).
[12] 刘战强, 贺蒙, 赵建. 机械加工强化机理与工艺技术研究进展[J].中国机械工程, 2015, 26(3):403-413. LIU Z Q, HE M, ZHAO J. Mechanical machining strengthening mechanism and material processing technology-a review[J].China Mechanical Engineering. 2015, 26(3):403-413(in Chinese).
[13] 别文博, 赵波, 王晓博, 等. 超声加工在齿轮抗疲劳制造中的研究综述与展望[J].表面技术, 2018, 47(7):47-63. BIE W B, ZHAO B, WANG X B, et al. Overview of ex-pectation on gear anti-fatigue manufacture by ultrasonic-assisted machining[J].Surface Technology, 2018, 47(7):47-63(in Chinese).
[14] 郑建新, 罗傲梅, 刘传绍. 超声表面强化技术的研究进展[J].制造技术与机床, 2012(10):32-36. ZHENG J X,LUO A M,LIU C S. Development of ultrasonic surface enhancement technique[J].Manufacturing Technology and Machine Tool, 2012(10):32-36(in Chinese).
[15] 宋德玉, 高文, 赵振业, 等. 内螺纹滚压强化对超高强度钢疲劳性能的影响[J].航空学报, 1995, 16(5):619-622. SONG D Y, GAO W, ZHAO Z Y, et al. Effect of female screw rolling strengthening on fatigue property of 300m superhigh strength steel[J].Acta Aeronautica et Astronautica Sinica, 1995, 16(5):619-622(in Chinese).
[16] 李瑞锋, 张德远, 程明龙. 高强钢大直径内螺纹超声滚压强化技术[J].中国表面工程, 2014, 27(2):63-68. LI R F, ZHANG D Y, CHENG M L. High-strength steel large-diameter internal thread strengthening by ul-trasonic burning technology[J].China Surface Engi-neering, 2014, 27(2):63-68(in Chinese).
[17] CHENG M L, ZHANG D Y, CHEN H W, et al. Devel-opment of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread[J].Journal of Materials Processing Technology, 2014, 214(11):2395-2401.
[18] SHIOU F J, CIOU H S. Ultra-precision surface finish of the hardened stainless mold steel using vibration-assisted ball polishing process[J].International Journal of Machine Tools and Manufacture, 2008, 48(7-8):721-732.
[19] YU T B, YANG X Z, AN J B, et al. Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel718 nickel-based alloy[J].The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):657-667.
[20] LIU D F, YAN R M, CHEN T. Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials[J].The International Journal of Advanced Manufacturing Technology, 2017, 92(1-4):81-89.
[21] MACHANG H, TSUNG T T, YANG Y C, et al. Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode[J].International Journal of Advanced Manufacturing Technology, 2005, 26(5-6):552-558.
[22] MAXIMOV J T. Spherical mandrelling method imple-mentation on conventional machine tools[J].International Journal of Machine Tools and Manufacture, 2002, 42(12):1315-1325.
[23] MAXIMOV J T, KUZMANOV T V, DUNCHEVA G V, et al. Spherical motion burnishing implemented on lathes[J].International Journal of Machine Tools and Manufacture, 2009, 49(11):824-831.
[24] MAXIMOV J T, ANCHEV A P. Modelling of residual stress field in spherical mandrelling process[J].Interna-tional Journal of Machine Tools and Manufacture, 2003, 43(12):1241-1251.
[25] MAXIMOV J T, KALCHEV G M. Modelling of spher-ical mandrelling manufacturing resistance[J].Interna-tional Journal of Machine Tools and Manufacture, 2004, 44(1):95-100.
[26] SHIOU F J, CHEN C H. Freeform surface finish of plastic injection mold by using ball-burnishing process[J].Journal of Materials Processing Technology, 2003, 140(1-3):248-254.
[27] JAIN N K. Review of gear finishing processes[J].Comprehensive Materials Finishing, 2017(1):93-120.
[28] 陈文蕊. 基于超声深滚理论齿轮齿面光整强化研究[D]. 大连:大连理工大学, 2012:11-17. CHEN W R. Research of finishing and improvement of gear properties by ultrasonic surface rolling processing[D]. Dalian:Dalian University of Technology, 2012:11-17(in Chinese).
[29] 赵慧玲. 齿轮齿面超声挤压强化技术研究[D]. 北京:北京交通大学, 2018:27-37. ZHAO H L. Research on ultrasonic extrusion strengthening technology of gear tooth surface[D]. Beijing:Beijing Jiaotong University, 2018:27-37(in Chinese).
[30] LACALLE L N L, LAMIKIZ A, MUOA J, et al. Quality improvement of ball-end milled sculptured surfaces by ball burnishing[J].International Journal of Machine Tools and Manufacture, 2005, 45(15):1659-1668.
[31] SHIOU F J, HSU C C. Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre[J].Journal of Materials Processing Technology, 2008, 205(1-3):249-258.
[32] EL-TAYEB N S M, LOW K O, BREVERN P V. Influ-ence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of aluminium 6061[J].Journal of Materials Processing Technology, 2007, 186(1-3):272-278.
[33] TEIMOURI R, AMINI S. A comprehensive optimization of ultrasonic burnishing process regarding energy efficiency and workpiece quality[J].Surface and Coatings Technology, 2019, 375:229-242
[34] TEIMOURI R, AMINI S, ALIREZA B B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6[J].Measurement, 2018(116):129-139.
[35] WANG H B, YANG X H, LI H, et al. Enhanced fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by electropulsing-assisted ultrasonic surface rolling process[J].Journal of Materials Research, 2018, 33(22):1-14.
[36] 王燕礼, 朱有利, 杨嘉勤. 滚压强化技术及在航空领域研究应用进展[J].航空制造技术, 2018, 61(5):75-83. WANG Y L, ZHU Y L, YANG J Q. Rolling reinforcement technology and its research application progress in aviation field[J].Aeronautical Manufacturing Technology, 2018, 61(5):75-83(in Chinese).
[37] BACKER V, KLOCKE F, WEGNER H, et al. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling[J].IOP Conference Series:Materials Science and Engineering, 2010(10):012134.
[38] PREVEY P S, HORNBACH D J, JACOBS T L, et al. Improved damage tolerance in titanium alloy fan blades with low plasticity burnishing[C]//International Surface Engineering Conference, 2002.
[39] 张德远, 刘逸航, 耿大喜, 等. 超声加工技术的研究进展[J].电加工与模具, 2019(5):1-19. ZHANG D Y, LIU Y H, GENG D X, et al. The research progress of ultrasonic machining technology[J].Electromachining and Mould, 2019(5):1-19(in Chinese).
[40] 吕宗敏. 超声冲击对转向架焊接十字接头表层组织及超高周疲劳性能的影响[D]. 南昌:华东交通大学, 2016:20-23. LV Z M. Effect of ultrasonic impact on the surface microstructrue and very high cycle fatigue properties of welded cross joints for train bogie[D]. Nanchang:East China Jiaotong University, 2016:20-23(in Chinese).
[41] 任学冲, 陈利钦, 刘鑫贵, 等. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J].材料工程, 2015, 43(12):1-5. REN X C, CHEN L Q, LIU X G, et al. Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J].Journal of Materials Engineering, 2015, 43(12):1-5(in Chinese).
[42] 胡君杰. 超声滚压对60 Si2CrVAT弹簧钢表面完整性和疲劳性能的影响[D]. 贵阳:贵州大学, 2017:21-64. HU J J. Effect of surface ultrasonic rolling processing on surface integrity and fatigue properties of 60 Si2CrVAT spring steel[D]. Guiyang:Guizhou University, 2017:21-64(in Chinese).
[43] LIU C S, LIU D X, ZHANG X H, et al. On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy[J].Surface and Coatings Technology, 2019, 370:24-34.
[44] LUO H, LIU J, WANG L, et al. Study of the mechanism of the burnishing process with cylindrical polycrystalline diamond tools[J].Journal of Materials Processing Technology, 2006, 180(1-3):9-16.
[45] 赵建, 王兵, 刘战强. 旋转超声滚压加工中的滚压力与滚压深度及表面形貌研究[J].兵工学报, 2016, 37(4):696-704. ZHAO J, WANG B, LIU Z Q. The investigation into burnishing force,burnishing depth and surface morphology in rotary ultrasonic burnishing[J].Acta Armamentarii, 2016, 37(4):696-704(in Chinese).
[46] HIEGEMANN L, WEDDELING C, KHALIFA N B, et al. Analytical prediction of roughness after ball burnish-ing of thermally coated surfaces[J].Procedia Engineering, 2014(81):1921-1926.
[47] KORZYNSKI M. Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool[J].International Journal of Machine Tools and Manufacture, 2007, 47(12-13):1956-1964.
[48] HIEGEMANN L, WEDDELING C, KHALIFA N B, et al. Prediction of roughness after ball burnishing of thermally coated surfaces[J].Materials Processing Technology, 2015, 217(1):193-201.
[49] TEIMOURI R, AMINI S, ASHRAFIFI H. An analytical model of burnishing forces using slab method[J].Proceedings of the Institution of Mechanical Engineers, 2019, 233(3):630-642.
[50] TEIMOURI R, AMINI S. Analytical modeling of ultrasonic burnishing process:Evaluation of active forces[J].Measurement, 2019, 131:654-663.
[51] TABATABAEI S M K, BEHBAHANI S, MIRIAN S M. Analysis of ultrasonic assisted machining (UAM) on regenerative chatter in turning[J].Journal of Materials Processing Technology, 2013, 213(3):418-425.
[52] 徐振国. 金属平面滚压塑性精密加工的研究[D]. 长春:吉林大学, 2006:16-31. XU Z G. Study on plastic and precise roller-burnishing process for metal plane[D]. Changchun:Jilin University, 2006:16-31(in Chinese).
[53] HAN S, LEE T, SHIN B. Residual stress relaxation of welded steel components under cyclic load[J].Steel Re-search, 2002, 73(9):414-420.
[54] ZHUANG W Z, HALFORD G R. Investigation of resi-dual stress relaxation under cyclic load[J].International Journal of Fatigue, 2001, 23:31-37.
[55] LIU Y, ZHAO X, WANG D. Effective FE model to predict surface layer characteristics of ultrasonic surface rolling with experimental validation[J].Material Science and Technology, 2014, 30(6):627-636.
[56] 徐红玉, 刘立波, 崔凤奎. 风电轴承套圈超声滚压强化残余应力形成规律分析[J].塑性工程学报, 2019, 26(5):125-132. XU H Y, LIU L B, CUI F K. Analysis of residual stress formation in ultrasonic rolling strengthening of wind power bearing rings[J].Journal of Plasticity Engineering, 2019, 26(5):125-132(in Chinese).
[57] 张存鹰, 赵波. 超声振动辅助加工表面微结构及其特性研究进展[J].表面技术, 2019, 48(5):271-286. ZHANG C Y, ZHAO B. Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining[J].Surface Technology, 2019, 48(5):271-286(in Chinese).
[58] 毛淼东. 超声滚压对Ti-6Al-4V合金高低周疲劳性能影响研究[D]. 广州:华东理工大学, 2018:22-26. MAO M D. Study on the effect of ultrasonic deep rolling on the low- and high-cycle fatigue behavior of Ti-6al-4v[D]. Guangzhou:East China University of Science and Technology, 2018:22-26(in Chinese).
[59] BOUZID W, TSOUMAREV O, SA K. An investigation of surface roughness of burnished AISI 1042 steel[J].International Journal of Advanced Manufacturing Tech-nology, 2004, 24(1-2):120-125.
[60] SASA R, BRANKOT, PETAR M T. Modelling of the ball burnishing process with a high-stiffness tool[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1509-1518.
[61] BOUGHARRIOU A, SA W B, SA K. Prediction of sur-face characteristics obtained by burnishing[J].The In-ternational Journal of Advanced Manufacturing Tech-nology, 2010, 51(1-4):205-215.
[62] LI F L, WEI X, ZHAO Y Z. Analytical prediction and experimental verification of surface roughness during the burnishing process[J].International Journal of Machine Tools and Manufacture, 2012, 62:67-75.
[63] GHARBI F, SGHAIER S, HAMDI H, et al. Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device[J].International Journal of Advanced Manufacturing Technology, 2012, 60(1-4):87-99.
[64] BOUGHARRIOU A, BOUZID W, SA K. Analytical modeling of surface profile in turning and burnishing[J].The International Journal of Advanced Manufacturing Technology, 2014, 75(1-4):547-558.
[65] ESME U, SAGBAS A, KAHRAMAN F, et al. Use of artificial neural networks in ball burnishing process for the prediction of surface roughness of AA 7075 aluminum alloy[J].Material in Technology, 2008, 42(5):215-219.
[66] BASAK H, GOKTAS H H. Burnishing process on al-alloy and optimization of surface roughness and surface hardness by fuzzy logic[J].Materials and Design, 2009, 30(4):1275-1281.
[67] UGUR E, KULEKCI M K, OZGUN S, et al. Predictive modeling of ball burnishing process using regression analysis and neural network[J].Materials Testing, 2013, 55(3):187-192.
[68] JOHN M R S, VINAYAGAM B K. Optimization of nonlinear characteristics of ball burnishing process using Sugeno fuzzy neural system[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(1):101-109.
[69] SARHAN A A D, EL-TAYEB N S M. Investigating the surface quality of the burnished brass C3605-fuzzy rule-based approach[J].The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1143-1150.
[70] 史磊, 杨光, 林文俊. 前缘侵蚀对风扇转子叶片气动特性的影响机理[J].航空学报, 2019, 40(10):123007. SHI L, YANG G, LIN W J. Influence mechanism of leading-edge erosion on aerodynamic performance of fan rotor blade[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(10):123007(in Chinese).
[71] 王生武, 温爱玲, 邴世君, 等. 滚压强化的残余应力的数值仿真及工艺分析[J].计算力学学报, 2008, 25(S1):113-118. WANG S W, WEN A L, BING S J, et al. FE simulation of residual stresses by surface rolling and analysis of rolling process[J].Chinese Journal of Computational Mechanics, 25(S1):113-118(in Chinese).
[72] JIANG Y Y, XU B Q, SEHITOGLU H. Three-dimensional elastic-plastic stress analysis of rolling contact[J].Journal of Tribology, 2002, 124(4):699-708.
[73] 李卫国. 孔滚压光整强化机理及残余应力分析研究[D]. 太原:中北大学, 2019:41-61. LI W G. Deep hole rolling lightening strengthening mechanism and residual stress analysis[D]. Taiyuan:North University of China, 2019:41-61(in Chinese).
[74] ZHUANG W, WICKS B. Multipass low-plasticity bur-nishing induced residual stresses:three-dimensional elastic-plastic finite element modelling[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2004, 218(6):663-668.
[75] YEN Y C, SARTKULVANICH P, ALTAN T. Finite element modeling of roller burnishing process[J].CIRP Annals-Manufacturing Technology, 2005, 54(1):237-240.
[76] MAXIMOV J T, DUNCHEVA G V. Finite element analysis and optimization of spherical motion burnishing of low-alloy steel[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2012, 226(1):161-176.
[77] LIU Y, WANG L J, WANG D P. Finite element modeling of ultrasonic surface rolling process[J].Journal of Materials Processing Tech, 2011, 211(12):2106-2113.
[78] SAYAHI M, SGHAIER S, BELHADJSALAH H. Finite element analysis of ball burnishing process:comparisons between numerical results and experiments[J].International Journal of Advanced Manufacturing Technology, 2013, 67(5-8):1665-1673.
[79] BALLAND P, TABOUROT L, DEGRE F, et al. An in-vestigation of the mechanics of roller burnishing through finite element simulation and experiments[J].International Journal of Machine Tools and Manufacture, 2013, 65:29-36.
[80] BOUZID S W, SAI K. Finite element modeling of bur-nishing of AISI 1042 steel[J].International Journal of Advanced Manufacturing Technology, 2005, 25(5-6):460-465.
[81] BALLAND P, TABOUROT L, DEGRE F, et al. Me-chanics of the burnishing process[J].Precision Engineering, 2013, 37(1):129-134.
[82] MOHAMMADI F, SEDAGHATI R, BONAKDAR A. Finite element analysis and design optimization of low plasticity burnishing process[J].The International Journal of Advanced Manufacturing Technology, 2014, 70(5-8):1337-1354.
[83] 田硕, 尚建勤, 盖鹏涛, 等. 带筋整体壁板预应力喷丸成形数值模拟及变形预测[J].航空学报, 2019, 40(10):422847. TIAN S, SHANG J Q, GAI P T, et al. Numerical simulation and deformation prediction of stress peen forming for integrally-stiff-ened panels[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(10):422847(in Chinese).
[84] RODRíGUEZ A, LóPEZ DE LACALLE L N, CELAYA A, et al. Surface improvement of shafts by the deep ball-burnishing technique[J].Surface and Coatings Technology, 2012, 206(11-12):2817-2824.
[85] EL-TAWEEL T A, EL-AXIR M H. Analysis and opti-mization of the ball burnishing process through the Taguchi technique[J].International Journal of Advanced Manufacturing Technology, 2009, 41(3-4):301-310.
[86] GHARBI F, SGHAIER S, AL-FADHALAH K J, et al. Effect of ball burnishing process on the surface quality and microstructure properties of AISI 1010 steel plates[J].Journal of Materials Engineering and Performance, 2011, 20(6):903-910.
[87] RAO D S, HEBBAR H S, KOMARAIAH M. Surface hardening of high-strength low alloy steels (HSLA) dual-phase steels by ball burnishing using factorial de-sign[J].Materials and Manufacturing Processes, 2007, 22(7-8):825-829.
[88] SHREEHAH T A A. Developing and investigating of elastic ball burnishing tool[J].The International Journal of Advanced Manufacturing Technology, 2008, 36(3-4):270-279.
[89] SAGBAS A. Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function[J].Advances in Engineering Software, 2011, 42(11):992-998.
[90] 杜旭, 张腾, 何宇廷, 等. 孔冷挤压有限元仿真中的铰削分界面位置确定方法[J].航空学报, 2019, 40(4):422674. DU X, ZHANG T, HE Y T, et al. Determining position of reaming interface in cold expansion on FEM simulation[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(4):422674(in Chinese).
[91] LIU C S,LIU D X,ZHANG X H, et al. Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy[J].Materials, 2017, 10(7):833.
[92] DAAVARI M, VANINI S A S. Corrosion fatigue en-hancement of welded steel pipes by ultrasonic impact treatment[J].Materials Letter, 2015, 139:462-466.
[93] WANG H B, SONG G L, TANG G Y. Evolution of surface mechanical properties and microstructure of Ti6Al4V alloy induced by electropulsing-assisted ultrasonic sur-face rolling process[J].Journal of Alloys and Compounds, 2016, 681:146-156.
[94] YE C, TELANG A, GILL A S, et al. Gradient nano-structure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility[J].Materials Science and Engineering:A, 2014, 613:274-288.
[95] 张飞, 赵运才. 超声表面滚压处理对45钢摩擦学性能的影响及机理[J].机械工程材料, 2017, 41(8):44-48. ZHANG F, ZHAO Y C. Influence of ultrasonic surface rolling processing on tribological performance of 45 steel and its mechanism[J].Materials for Mechanical Engineering, 2017, 41(8):44-48(in Chinese).
[96] 王婷, 王东坡, 刘刚, 等. 40Cr超声表面滚压加工纳米化[J].机械工程学报, 2009, 45(5):177-183. WANG T, WANG D P, LIU G, et al. 40Cr nano-crystallization by ultrasonic surface rolling extrusion processing[J].Journal of Mechanical Engineering, 2009, 45(5):177-183(in Chinese).
[97] AMANOV A, UMAROV R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of inconel 690 alloy[J].Applied Surface Science, 2018, 441:515-529.
[98] 李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响[J].表面技术, 2019, 48(10):34-40. LI F Q, ZHAO B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties[J].Surface Technology, 2019, 48(10):34-40(in Chinese).
[99] 张飞, 上官绪超. 表面超声滚压处理对AISI304不锈钢疲劳性能的影响[J].热加工工艺, 2017, 46(16):144-148. ZHANG F, SHANGGUAN X C. Effect of surface ultrasonic rolling processing on fatigue properties of ai-si304 austenite stainless steel[J].Hot Working Technology, 2017, 46(16):144-148(in Chinese).
[100] THAKUR D G, RAMAMOORTHY B, VIJAYARAGHAVAN L. Machinability investigation of Inconel 718 in high-speed turning[J].International Journal of Advanced Manufacturing Technology, 2009, 45(5-6):421-429.
[101] OEZKAYA E, BEER N, BIERMANN D. Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718[J].International Journal of Machine Tools and Manufacture, 2016, 108:52-65.
[102] HAO Z P, GAO D, FAN Y H, et al. New observations on tool wear mechanism in dry machining Inconel718[J].International Journal of Machine Tools and Manufacture, 2011, 51(12):973-979.
[103] 钟丽琼. 表面形变强化残余应力场对Inconel718高温合金高周疲劳性能的影响规律研究[D]. 贵阳:贵州大学, 2019:43-56. ZHONG L Q. Study on the effect of surface strengthened residual stress field on high cycle fatigue properties of inconel 1718 super alloy[D]. Guiyang:Guizhou University, 2019:43-56(in Chinese).
[104] YU T B, GUO X P, WANG Z H, et al. Effects of the ultrasonic vibration field on polishing process of nickel-based alloy Inconel718[J].Journal of Materials Processing Technology, 2019, 273:116228.
[105] WANG T, WANG D P, LI G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing[J].Applied Surface Science, 2008, 255(5):1824-1829.
[106] ZHANG Q L, HU Z Q, SU W W, et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J].Surface and Coatings Technology, 2017, 321:64-73.
[107] CHENG M L, ZHANG D Y, CHEN H W, et al. Surface nanocrystallization and its effect on fatigue performance of high-strength materials treated by ultrasonic rolling process[J].The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4):123-131.
[108] LAI F Q, QU S G, LEWIS R, et al. The influence of ultrasonic surface rolling on the fatigue and wear properties of 23-8 N engine valve steel[J].International Journal of Fatigue, 2019, 125:299-313.
[109] 李真, 王俊, 邓凡臣, 等.复合材料机身壁板的强度分析、试验及验证[J/OL]. 航空学报,(2020-01-04)[2020-01-21].http://kns.cnki.net/kcms/detail/11.1929.v.20200119.1455.008.html. LI Z, WANG J, DENG F C, et al. Strength analysis, test and verification of composite fuselage panels[J].Acta Aeronautica et Astronautica Sinica, (2020-01-04)[2020-01-21]. http://kns.cnki.net/kcms/detail/11.1929.v.20200119.1455.008.html (in Chinese).
[110] 赵运才, 张飞. 静压力对超声滚压表层特性的影响[J].表面技术, 2017, 46(5):152-158. ZHAO Y C, ZHANG F. Effect of static pressure on surface characteristics of ultrasonic rolling[J].Surface Technology, 2017, 46(5):152-158(in Chinese).
[111] 宋锦春, 贾志强, 张敏鑫. 超声滚压光整加工参数对45钢表面粗糙度和硬度的影响[J].制造技术与机床, 2016(11):85-89. SONG J C, JIA Z Q, ZHANG M X. Influence of ultrasonic rolling and finishing processing parameters on surface roughness and hardness of 45 steel[J].Manufacturing Technology and Machine Tool, 2016(11):85-89(in Chinese).
[112] 陈利钦, 项彬, 任学冲, 等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J].中国表面工程, 2014, 27(5):96-101. CHEN L Q, XIANG B, REN X C, et al. Influence of Surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J].China Surface Engineering, 2014, 27(5):96-101(in Chinese).
[113] 郑建新, 蒋书祥. 7050铝合金二维超声滚压加工残余应力场研究[J].表面技术, 2017, 46(12):265-269. ZHENG J X, JIANG S X. Residual stress field in the process of 2 d ultrasonic rolling 7050 aluminum alloy[J].Surface Technology, 2017, 46(12):265-269(in Chinese).
[114] 郑建新, 侯雅丽. 纵-扭复合振动超声深滚加工工艺试验[J].中国机械工程, 2016, 27(19):2636-2640. ZHENG J X, HOU Y L. Technology experiments of ul-trasonic deep rolling with longitudinal-torsion vibra-tion[J].China Mechanical Engineering, 2016, 27(19):2636-2640(in Chinese).
[115] WU B, WANG P, PYOUN Y S, et al. Effect of ultrason-ic nanocrystal surface modification on the fatigue beha-viors of plasmanitrided S45C steel[J].Surface and Coatings Technology, 2012, 213:271-277.
[116] LI G, QU S G, PAN Y X, et al. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti-6Al-4V alloy[J].Applied Surface Science, 2016, 389:324-334.
[117] LI G, QU S, XIE M X, et al. Effect of ultrasonic surface rolling at low temperatures on surface layer microstruc-ture and properties of HIP Ti-6Al-4V alloy[J].Surface and Coatings Technology, 2017, 316:75-84.
[118] PRAKASH N A, GNANAMOORTHY R, KAMARAJ M. Microstructural evolution and mechanical properties of oil jet peened aluminium alloy, AA6063-T6[J].Materials and Design, 2010, 31(9):4066-4075.
[119] 刘宇, 王立君, 王东坡, 等. 超声表面滚压加工40Cr表层的纳米力学性能[J].天津大学学报, 2012, 45(7):656-661. LIU Y, WANG L J, WANG D P, et al. Nano mechanical properties of 40Cr surface layer after ultrasonic surface rolling processing[J].Journal of Tianjin University, 2012, 45(7):656-661(in Chinese).
[120] 邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J].物理测试, 2012, 30(6):17-21. ZOU Z X, XIANG J Z, XU S Y. Theoretical derivation of hall-petch relationship and discussion of its applicable range[J].Physics Examination and Testing, 2012, 30(6):17-21(in Chinese).
[121] 叶寒, 赖刘生, 李骏, 等. 超声滚压强化7075铝合金工件表面性能的研究[J].表面技术, 2018, 47(2):8-13. YE H,LAI L S, LI J, et al. Surface Properties of 7075 aluminum alloy workpieces after ultrasonic burnishing processing[J].Surface Technology, 2018, 47(2):8-13(in Chinese).
[122] KIM J C, CHEONG S K, NOGUCHI H. Evolution of residual stress redistribution associated with localized surface microcracking in shot-peened medium-carbon steel during fatigue test[J].International Journal of Fa-tigue, 2013, 55:147-157.
[123] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J].航空学报, 2020,41(2):623301. ZHAO B, LI P T, ZHANG C Y, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623301(in Chinese).
[124] ZHAO X H, XUE G L, LIU Y. Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy[J].Results in Physics, 2017, 7:1845-1851.
[125] 何婧, 赵飞, 王稼林, 等. 表面超声滚压工艺参数对Inconel718疲劳寿命的影响[J].热加工工艺, 2017, 46(10):116-119. HE Q, ZHAO F, WANG J L, et al. Effect of surface ultrasonic rolling process parameters on fatigue life of inconel 718[J].Hot Working Technology, 2017, 46(10):116-119(in Chinese).
[126] 王义, 鲍绍箕. 超声振动挤压强化工艺研究(二)——工艺参数对其强化效果的影响[J].电加工, 1993(3):22-26. WANG Y, BAO S Q. Study on the strengthening process of ultrasonic vibration extrusion (Ⅱ)-the influence of process parameters on the strengthening effect[J].Electrical Machining, 1993(3):22-26(in Chinese).
[127] LI G, QU S G, XIE M X, et al. Effect of multi-pass ul-trasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V Alloy[J].Materials, 2017, 10(2):133.
[128] ZHAO W D,LIU D X,ZHANG X H, et al. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process[J].International Journal of Fatigue, 2019, 121:30-38
[129] 张胜博, 向嵩, 成桃, 等. 超声滚压20CrMnTi纳米化表面对局部腐蚀萌生行为的影响[J].表面技术, 2019, 48(8):136-143. ZHANG S B, XIANG S, CHENG T, et al. Influence of surface nanocrystallization of 20crmnti on behavior of localized corrosion by ultrasonic surface rolling processing[J].Surface Technology, 2019, 48(8):136-143(in Chinese).
[130] WU B, ZHANG J X, ZHANG L J, et al. Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel[J].Applied Surface Science, 2014, 321:318-330.
[131] 高玉魁. 表面完整性理论与应用[M]. 北京:化学工业出版社, 2014:241-244. GAO Y K. Surface integrity theory and its applic-ations[M]. Beijing:Chemical Industry Press, 2014:241-244(in Chinese).
Outlines

/