[1] HYNES N R J, SOLOMON A J M, KATHIRES H, et al. Design and development of flapping wing micro air vehicle[C]//2nd International Conference on Condensed Matter and Applied Physics (ICC 2017), 2018.
[2] 向锦武, 孙毅, 申童, 等. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4):8-23. XIANG J W, SUN Y, SHEN T, et al. Research progress and application of flapping wing aerodynamics[J]. Engineering Mechanics, 2019, 36(4):8-23(in Chinese).
[3] HE G P, SU T T, JIA T M, et al. Dynamics analysis and control of a bird scale under actuated flapping-wing vehicle[J]. IEEE Transactions on Control Systems Technology, 2019, 99:1-10.
[4] ZHU B, HUANG Y, ZHANG Y M. Energy harvesting properties of a flapping wing with an adaptive Gurney flap[J]. Energy, 2018, 152:119-128.
[5] GERDES J W, GUPTA S K, WILKERSON S A. A re-view of bird-inspired flapping wing miniature air vehicle designs[C]//ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal:American Society of Mechanical Engineers, 2012:57-67.
[6] MOHD F B A, AZMIN S B M R, HAMID B Y, et al. Flapping wing micro-aerial-vehicle:Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight[J]. Chinese Journal of Aeronautics, 2016, 29(5):1159-1177.
[7] PRAVEENA N S, THOMAS A W, ERFAN S, et al. An experimental study of elastic properties of dragonfly-like flapping wings for use in biomimetic micro air vehicles(BMAVs)[J]. Chinese Journal of Aeronautics, 2017, 30(2):726-737.
[8] CHENG B, ROLL J A, DENG X. Modeling and optimization of an electromagnetic actuator for flapping wing micro air vehicle[C]//IEEE International Conference on Robotics & Automation. New York:IEEE, 2013:4035-4037.
[9] HU Z, CHENG B, DENG X. Lift generation and flow measurements of a robotic insect[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. New York:IEEE, 2013:1-5.
[10] ZHANG J, CHENG B, ROLL J A, et al. Direct drive of flap ping wings under resonance with instantaneous wing trajectory control[C]//2013 IEEE International Conference on Robotics and Automation. New York:IEEE, 2013.
[11] ZHANG J, DENG X. Resonance principle for the design of flapping wing micro air vehicles[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:IEEE, 2016.
[12] WOOD R J. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2):341-347.
[13] MA K Y, WOOD R J. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132):603-660.
[14] FINIO B M, SHANG J K, WOOD R J. Body torque modulation for a micro robotic fly[C]//IEEE International Conference on Robotics and Automation. New York:IEEE, 2009:3449-3456.
[15] DE C G C, GROEN M A, DE W C, et al. Design, aerodynamics and autonomy of the DelFly[J]. Bioinspiration & Biomimetics, 2012, 7(2):025003.
[16] DECROON G C H E, PERÇIN M, REMES B D W, et al. The DelFly:Design, aerodynamics, and artificial intelligence of a flapping wing robot[M]. Netherlands:Springer Publishing Company, 2015:13-14.
[17] DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal of Micro Air Vehicles, 2009, 1(2):71-97.
[18] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Energetics-based design of small flapping-wing micro air vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4):433-438.
[19] 谢鹏, 姜洪利, 周超英. 一种仿生扑翼飞行器的设计及动力学分析[J]. 航空动力学报, 2018, 33(3):703-710. XIE P, JIANG H L, ZHOU C Y. Design and dynamic analysis of a flapping wing air vehicle[J]. Journal of Aerospace Power, 2018, 33(3):703-710(in Chinese).
[20] 张锐, 周超英, 汪超, 等. 蜻蜓非对称扑动时的气动特性[J]. 航空学报, 2017, 38(12):106-118. ZHANG R, ZHOU C Y, WANG C, et al. Aerodynamic characteristics of dragonfly in asymmetric flapping[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):106-118(in Chinese).
[21] ZHANG Q, ZHOU C, XIE P. Design and aerodynamic analysis of flexible flapping wing robot[C]//2017 IEEE International Conference on Information and Automation (ICIA). New York:IEEE, 2017:1099-1103.
[22] 王姝歆, 陈国平, 周建华, 等. 压电双晶片驱动的仿生柔性扑翼机构研究[J]. 光学精密工程, 2006, 14(4):617-622. WANG S X, CHEN G P, ZHOU J H, et al. Study on insect-based flapping-wing system driven by piezoelectric bimorph[J]. Optics and Precision Engineering, 2006, 14(4):617-622(in Chinese).
[23] 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1):69-80. ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):69-80(in Chinese).
[24] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016, 31(8):1838-1844. HUANG M Y, XIAO T H, ANG H S. Design of an ornithopter with multisection flexible morphing wings[J]. Journal of Aerospace Power, 2016, 31(8):1838-1844(in Chinese).
[25] 叶以楠, 张卫平. 基于OpenCV的微型扑翼飞行器视觉伺服系统[J]. 计算机与现代化, 2015(4):90-93. YE Y N, ZHANG W P. A visual servo system of FMAV based on OpenCV[J]. Computer and Modernization, 2015(4):90-93(in Chinese).
[26] 邹才均, 张卫平, 柯希俊, 等. 仿昆扑翼微飞行器中高效传动铰链的研究[J]. 上海交通大学学报, 2014, 48(3):439-444. ZOU C J, ZHANG W P, KE X J, et al. Efficient flexures for insect-like flapping-wing micro aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2014, 48(3):439-444(in Chinese).
[27] TSAI B J, FU Y C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle[J]. Aerospace Science and Technology, 2009, 13(7):383-392.
[28] AGRAWAL A, AGRAWAL S K. Design of bio-inspired flexible wings for flapping-wing micro-sized air vehicle applications[J]. Advanced Robotics, 2009, 23(7-8):979-1002.
[29] MCINTOSH S H, AGRAWAL S K, KHAN Z. Design of a mechanism for biaxial rotation of a wing for a hovering vehicle[C]//The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. New York:IEEE, 2006:145-153.
[30] KHAN Z A, AGRAWAL S K. Design of flapping mechanisms based on transverse bending phenomena in insects[C]//IEEE International Conference on Robotics & Automation. New York:IEEE, 2006.
[31] KHAN Z A, AGRAWAL S K. Study of biologically inspired flapping mechanism for micro air vehicles[J]. AIAA Journal, 2011, 49(7):1354-1365.
[32] KHAN Z A, AGRAWAL S K. Design and optimization of a biologically inspired flapping mechanism for flapping wing micro air vehicles[C]//2007 IEEE International Conference on Robotics and Automation. New York:IEEE, 2007.
[33] 周凯, 方宗德, 曹雪梅, 等. 单曲柄双摇杆扑翼驱动机构的优化设计[J]. 航空动力学报, 2008, 23(1):184-188. ZHOU K, FANG Z D, CAO X M, et al. Optimization design for single-crank and double-rocker kind of driving mechanism of FMAV[J]. Journal of Aerospace Power, 2008, 23(1):184-188(in Chinese).
[34] 陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12):2668-2681. CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2668-2681(in Chinese).
[35] XIE L, ZHANG X, LUO P, et al. Optimization design and dynamic analysis on the drive mechanisms of flapping-wing air vehicles based on flapping trajectories[J]. Journal of Physics:Conference Series, 2017, 916(1):1-14.
[36] WEN Q Q, GUO S J, LI H, et al. Nonlinear dynamics of a flapping rotary wing:Modeling and optimal wing kinematic analysis[J]. Chinese Journal of Aeronautics, 2018, 31(5):1041-1052.
[37] 张威, 刘光泽, 张博利. 扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J]. 航空学报, 2018, 39(9):421966. ZHANG W, LIU G Z, ZHANG B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):421966(in Chinese).
[38] KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005, 127(4):867-874.
[39] 贺威, 孙长银. 扑翼飞行机器人系统设计[M]. 北京:化学工业出版社, 2018:16-17. HE W, SUN C Y. System design of flapping wing flying robot[M]. Beijing:Chemical Industry Press, 2018:16-17(in Chinese).
[40] 张卫平, 楼星粱, 邹阳, 等. 可变共振频率电磁驱动式双驱动微扑翼飞行器:CN201410513964.6[P]. 2014-09-29. ZHANG W P, LOU X L, ZOU Y, et al. Dual drive flapping wing micro air vehicle with variable resonance frequency:CN201410513964.6[P]. 2014-09-29(in Chinese).