Material Engineering and Mechanical Manufacturing

Flapping mechanism with elastic components: dynamic analysis and experiment

  • ZHANG Wei ,
  • LIU Xinjie ,
  • LIU Yan ,
  • WANG Wenbo ,
  • ZHANG Boli
Expand
  • 1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;
    2. Aviation Ground Special Equipment Research Base, Tianjin 300300, China;
    3. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
    4. Basic Experiment Center, Civil Aviation University of China, Tianjin 300300, China

Received date: 2019-10-09

  Revised date: 2019-11-17

  Online published: 2020-03-26

Supported by

National Natural Science Foundation of China, Civil Aviation Administration of China (U1533103)

Abstract

To investigate the energy characteristics of flapping-wing transmission mechanisms, this study establishes a complete dynamic model based on the prototype of the Mechanical Systems Laboratory of Delaware University, taking into account the aerodynamic term and a tension spring. Analyses reveal that the peak torque of the aerodynamic term contributes a value of 4.8 times that of the inertia term, dominantly influencing the peak torque of the motor. Orthogonal simulations show that, consistent with the theoretical analyses, the introduction of the tension spring can reduce the peak torque of the motor up to 77.5%. Meanwhile, experimental results exhibit good agreement with theoretical and simulation results. Furthermore, the optimal solution (the position of joint point 185 mm, the original length of the spring 200 mm and the stiffness 0.1 N/mm) is obtained, providing reference for the optimization design of the transmission mechanism. In addition, elastic elements can also effectively reduce the speed fluctuation of the motor, thus providing theoretical guidance for the production and practical application of bionic flapping-wing air vehicles.

Cite this article

ZHANG Wei , LIU Xinjie , LIU Yan , WANG Wenbo , ZHANG Boli . Flapping mechanism with elastic components: dynamic analysis and experiment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(9) : 423559 -423559 . DOI: 10.7527/S1000-6893.2019.23559

References

[1] HYNES N R J, SOLOMON A J M, KATHIRES H, et al. Design and development of flapping wing micro air vehicle[C]//2nd International Conference on Condensed Matter and Applied Physics (ICC 2017), 2018.
[2] 向锦武, 孙毅, 申童, 等. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4):8-23. XIANG J W, SUN Y, SHEN T, et al. Research progress and application of flapping wing aerodynamics[J]. Engineering Mechanics, 2019, 36(4):8-23(in Chinese).
[3] HE G P, SU T T, JIA T M, et al. Dynamics analysis and control of a bird scale under actuated flapping-wing vehicle[J]. IEEE Transactions on Control Systems Technology, 2019, 99:1-10.
[4] ZHU B, HUANG Y, ZHANG Y M. Energy harvesting properties of a flapping wing with an adaptive Gurney flap[J]. Energy, 2018, 152:119-128.
[5] GERDES J W, GUPTA S K, WILKERSON S A. A re-view of bird-inspired flapping wing miniature air vehicle designs[C]//ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal:American Society of Mechanical Engineers, 2012:57-67.
[6] MOHD F B A, AZMIN S B M R, HAMID B Y, et al. Flapping wing micro-aerial-vehicle:Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight[J]. Chinese Journal of Aeronautics, 2016, 29(5):1159-1177.
[7] PRAVEENA N S, THOMAS A W, ERFAN S, et al. An experimental study of elastic properties of dragonfly-like flapping wings for use in biomimetic micro air vehicles(BMAVs)[J]. Chinese Journal of Aeronautics, 2017, 30(2):726-737.
[8] CHENG B, ROLL J A, DENG X. Modeling and optimization of an electromagnetic actuator for flapping wing micro air vehicle[C]//IEEE International Conference on Robotics & Automation. New York:IEEE, 2013:4035-4037.
[9] HU Z, CHENG B, DENG X. Lift generation and flow measurements of a robotic insect[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. New York:IEEE, 2013:1-5.
[10] ZHANG J, CHENG B, ROLL J A, et al. Direct drive of flap ping wings under resonance with instantaneous wing trajectory control[C]//2013 IEEE International Conference on Robotics and Automation. New York:IEEE, 2013.
[11] ZHANG J, DENG X. Resonance principle for the design of flapping wing micro air vehicles[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:IEEE, 2016.
[12] WOOD R J. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2):341-347.
[13] MA K Y, WOOD R J. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132):603-660.
[14] FINIO B M, SHANG J K, WOOD R J. Body torque modulation for a micro robotic fly[C]//IEEE International Conference on Robotics and Automation. New York:IEEE, 2009:3449-3456.
[15] DE C G C, GROEN M A, DE W C, et al. Design, aerodynamics and autonomy of the DelFly[J]. Bioinspiration & Biomimetics, 2012, 7(2):025003.
[16] DECROON G C H E, PERÇIN M, REMES B D W, et al. The DelFly:Design, aerodynamics, and artificial intelligence of a flapping wing robot[M]. Netherlands:Springer Publishing Company, 2015:13-14.
[17] DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal of Micro Air Vehicles, 2009, 1(2):71-97.
[18] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Energetics-based design of small flapping-wing micro air vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4):433-438.
[19] 谢鹏, 姜洪利, 周超英. 一种仿生扑翼飞行器的设计及动力学分析[J]. 航空动力学报, 2018, 33(3):703-710. XIE P, JIANG H L, ZHOU C Y. Design and dynamic analysis of a flapping wing air vehicle[J]. Journal of Aerospace Power, 2018, 33(3):703-710(in Chinese).
[20] 张锐, 周超英, 汪超, 等. 蜻蜓非对称扑动时的气动特性[J]. 航空学报, 2017, 38(12):106-118. ZHANG R, ZHOU C Y, WANG C, et al. Aerodynamic characteristics of dragonfly in asymmetric flapping[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):106-118(in Chinese).
[21] ZHANG Q, ZHOU C, XIE P. Design and aerodynamic analysis of flexible flapping wing robot[C]//2017 IEEE International Conference on Information and Automation (ICIA). New York:IEEE, 2017:1099-1103.
[22] 王姝歆, 陈国平, 周建华, 等. 压电双晶片驱动的仿生柔性扑翼机构研究[J]. 光学精密工程, 2006, 14(4):617-622. WANG S X, CHEN G P, ZHOU J H, et al. Study on insect-based flapping-wing system driven by piezoelectric bimorph[J]. Optics and Precision Engineering, 2006, 14(4):617-622(in Chinese).
[23] 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1):69-80. ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):69-80(in Chinese).
[24] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016, 31(8):1838-1844. HUANG M Y, XIAO T H, ANG H S. Design of an ornithopter with multisection flexible morphing wings[J]. Journal of Aerospace Power, 2016, 31(8):1838-1844(in Chinese).
[25] 叶以楠, 张卫平. 基于OpenCV的微型扑翼飞行器视觉伺服系统[J]. 计算机与现代化, 2015(4):90-93. YE Y N, ZHANG W P. A visual servo system of FMAV based on OpenCV[J]. Computer and Modernization, 2015(4):90-93(in Chinese).
[26] 邹才均, 张卫平, 柯希俊, 等. 仿昆扑翼微飞行器中高效传动铰链的研究[J]. 上海交通大学学报, 2014, 48(3):439-444. ZOU C J, ZHANG W P, KE X J, et al. Efficient flexures for insect-like flapping-wing micro aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2014, 48(3):439-444(in Chinese).
[27] TSAI B J, FU Y C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle[J]. Aerospace Science and Technology, 2009, 13(7):383-392.
[28] AGRAWAL A, AGRAWAL S K. Design of bio-inspired flexible wings for flapping-wing micro-sized air vehicle applications[J]. Advanced Robotics, 2009, 23(7-8):979-1002.
[29] MCINTOSH S H, AGRAWAL S K, KHAN Z. Design of a mechanism for biaxial rotation of a wing for a hovering vehicle[C]//The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. New York:IEEE, 2006:145-153.
[30] KHAN Z A, AGRAWAL S K. Design of flapping mechanisms based on transverse bending phenomena in insects[C]//IEEE International Conference on Robotics & Automation. New York:IEEE, 2006.
[31] KHAN Z A, AGRAWAL S K. Study of biologically inspired flapping mechanism for micro air vehicles[J]. AIAA Journal, 2011, 49(7):1354-1365.
[32] KHAN Z A, AGRAWAL S K. Design and optimization of a biologically inspired flapping mechanism for flapping wing micro air vehicles[C]//2007 IEEE International Conference on Robotics and Automation. New York:IEEE, 2007.
[33] 周凯, 方宗德, 曹雪梅, 等. 单曲柄双摇杆扑翼驱动机构的优化设计[J]. 航空动力学报, 2008, 23(1):184-188. ZHOU K, FANG Z D, CAO X M, et al. Optimization design for single-crank and double-rocker kind of driving mechanism of FMAV[J]. Journal of Aerospace Power, 2008, 23(1):184-188(in Chinese).
[34] 陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12):2668-2681. CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2668-2681(in Chinese).
[35] XIE L, ZHANG X, LUO P, et al. Optimization design and dynamic analysis on the drive mechanisms of flapping-wing air vehicles based on flapping trajectories[J]. Journal of Physics:Conference Series, 2017, 916(1):1-14.
[36] WEN Q Q, GUO S J, LI H, et al. Nonlinear dynamics of a flapping rotary wing:Modeling and optimal wing kinematic analysis[J]. Chinese Journal of Aeronautics, 2018, 31(5):1041-1052.
[37] 张威, 刘光泽, 张博利. 扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J]. 航空学报, 2018, 39(9):421966. ZHANG W, LIU G Z, ZHANG B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):421966(in Chinese).
[38] KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005, 127(4):867-874.
[39] 贺威, 孙长银. 扑翼飞行机器人系统设计[M]. 北京:化学工业出版社, 2018:16-17. HE W, SUN C Y. System design of flapping wing flying robot[M]. Beijing:Chemical Industry Press, 2018:16-17(in Chinese).
[40] 张卫平, 楼星粱, 邹阳, 等. 可变共振频率电磁驱动式双驱动微扑翼飞行器:CN201410513964.6[P]. 2014-09-29. ZHANG W P, LOU X L, ZOU Y, et al. Dual drive flapping wing micro air vehicle with variable resonance frequency:CN201410513964.6[P]. 2014-09-29(in Chinese).
Outlines

/