Special Topic of Advanced Manufacturing Technology and Equipment

Shape control for press bend forming of integral panels

  • ZHANG Min ,
  • TIAN Xitian ,
  • LI Bo
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-10-31

  Revised date: 2019-11-25

  Online published: 2020-03-13

Abstract

To solve the problems of low precision and uncontrollability caused by springback during the press bend forming of integral panels, this paper proposes a shape control method for bent parts. The specimen is designed with the aluminum alloy (7050-T7451) aircraft integral panel as the research object. In addition, the displacement prediction model of the local deformation is established based on the elastoplastic deformation theory and geometric analysis. A finite element simulation prediction model for the overall deformation of press bend forming is then developed, and the simulation results are compared with the test results. Furthermore, on the basis of the prediction model and considering the local-to-global deformation precision, this study constructs the contour curve iterative model based on the iterative compensation mechanism and the step by step approximation method. Compared with the traditional trial and error method, the proposed method can effectively control the shape of the bent parts with higher precision and faster convergence speed.

Cite this article

ZHANG Min , TIAN Xitian , LI Bo . Shape control for press bend forming of integral panels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(7) : 623620 -623620 . DOI: 10.7527/S1000-6893.2020.23620

References

[1] 林震宇, 刘庆华. 大型铝合金机翼整体壁板加工变形控制技术[J]. 航空制造技术, 2013(1/2):146-149. LIN Z Y, LIU Q H. Deformation control technology of integral panel for large aluminium alloy wing[J]. Aeronautical Manufacturing Technology, 2013(1/2):146-149(in Chinese).
[2] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:716-738. FAN Y Q, MEI Z Y, TAO J. Large aircraft digital manufacturing engineering[M]. Beijing:Aviation Industry Press, 2011:716-738(in Chinese).
[3] 曾元松, 黄遐. 大型整体壁板成形技术[J]. 航空学报, 2008, 29(3):721-727. ZENG Y S, HUANG X. Forming technologies of large integral panel[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):721-727(in Chinese).
[4] 林震宇, 林瑜华. 大厚度机翼整体壁板成形工艺技术创新[J]. 航空制造技术, 2011(13):54-56. LIN Z Y, LIN Y H. Technology innovation for molding the heavy thickness whole wall panel of wing[J]. Aeronautical Manufacturing Technology, 2011(13):54-56(in Chinese).
[5] 申世军, 倪勇军, 齐海雁, 等. 2219铝合金网格壁板增量成形有限元仿真[J]. 塑性工程学报, 2014, 21(2):71-75. SHEN S J, NI Y J, QI H Y, et al. Finite element simulation of incremental forming for 2219 aluminum integrally stiffened panel[J]. Journal of Plasticity Engineering, 2014, 21(2):71-75(in Chinese).
[6] 阎昱,万敏. 飞机整体壁板成形方法与数值模拟研究进展[J]. 中国科技论文在线精品论文,2013,6(8):697-705. YAN Y, WAN M. Development of aircraft integral panel forming method and numerical simulation[J]. Highlights of Sciencepaper Online, 2013, 6(8):697-705(in Chinese).
[7] LIU C G, LI J, DONG Y N, et al. Fracture prediction in the forming of aircraft Al stiffeners using multi-point dies[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12):3109-3118.
[8] GAN W, WAGONER R H. Die design method for sheet springback[J]. International Journal of Mechanical Sciences, 2004, 46(7):1097-1113.
[9] MA R, WANG C, ZHAI R X, et al. An iterative compensation algorithm for springback control in plane deformation and its application[J]. Chinese Journal of Mechanical Engineering, 2019, 32(2):212-223.
[10] MIRANDA S S, BARBOSA M R, SANTOS A D, et al. Forming and springback prediction in press brake air bending combining finite element analysis and neural networks[J]. The Journal of Strain Analysis for Engineering Design, 2018, 53(8):584-601.
[11] LI L, SEO Y H, HEO S C, et al. Numerical simulations on reducing the unloading springback with multi-step multi-point forming technology[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(1-4):45-61.
[12] SHEN W, YAN R J, LIN Y, et al. Evaluation of residual stress for multi-point repeated forming technology[J]. Ships and Offshore Structures, 2019:doi:10.1080/17445302.2019.1686228(in prese).
[13] CHOUDHURY I A, GHOMI V. Springback reduction of aluminum sheet in V-bending dies[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2014, 228(8):917-926.
[14] 梁继才, 李义. 型材多点拉弯成形制件的形状偏差控制[J]. 华南理工大学学报(自然科学版), 2016, 44(7):29-33. LIANG J C, LI Y. Control of shape deviation for multi-point stretch bending profiles[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(7):29-33(in Chinese).
[15] HARTMANN C, EDER M, OPRITESCU D, et al. Geometrical compensation of deterministic deviations for part finishing in bulk forming[J] Journal of Materials Processing Technology, 2018, 261:140-148.
[16] GAO S, LIANG J C, LI Y, et al. Precision forming of the 3D curved structure parts in flexible multi-points 3D stretch-bending process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4):1205-1213.
[17] 袁萍, 李继先, 李双印, 等. 船舶三维数控弯板机成形回弹控制的逐步逼近弯曲法研究[J]. 船舶工程, 2012, 34(3):65-67. YUAN P, LI J X, LI S Y, et al. Studies on step by step approximation method of springback control of curved plate forming by 3D CNC hull plate forming machine[J]. Ship Engineering, 2012, 34(3):65-67(in Chinese).
[18] 岳峰丽, 董沛存, 刘劲松. 带筋结构件自适应增量压弯特征线方程建立[J]. 沈阳理工大学学报, 2006, 25(5):79-82. YUE F L, DONG P C, LIU J S. The establishment of the characteristic line equation of adaptive incremental bending for the ribbed structural parts[J]. Journal of Shenyang Ligong University, 2006, 25(5):79-82(in Chinese).
[19] 付泽民, 胡大超, 刘旭辉. 大尺度U形曲面板材工件的成形模拟与实验研究[J]. 中南大学学报(自然科学版), 2012, 43(11):4313-4320. FU Z M, HU D C, LIU X H. Forming simulation and experimental study for large U-shaped workpiece of sheet metal[J]. Journal of Central South University (Science and Technology), 2012, 43(11):4313-4320(in Chinese).
[20] YAN Y, WANG H B, WAN M. Forming path optimiza-tion for press bending of aluminum alloy aircraft integral panel[J]. Journal of Shanghai Jiaotong University (Science), 2012, 17(5):635-642.
[21] HARDT D E, CONSTANTINE E, WRIGHT A. A model of the sequential bending process for manufacturing simulation[J]. Journal of Manufacturing Science and Engineering, 1992, 114(2):181-187.
[22] 张冬娟, 崔振山, 李玉强, 等. 宽板大曲率半径纯弯曲回弹量理论分析[J]. 工程力学, 2006, 23(10):77-81. ZHANG D J, CUI Z S, LI Y Q, et al. The springback of wide metal sheet after large radius pure bending[J]. Engineering Mechanics, 2006, 23(10):77-81(in Chinese).
[23] ZHANG M, TIAN X T. Residual stresses and strains analysis in press-braking bending parts considering multi-step forming effect[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2020, 234(4):788-800.
[24] 刘玉君, 纪卓尚, 董守富. 水火弯板局部收缩和整体变形的理论分析[J]. 中国造船, 1995(2):90-100. LIU Y J, JI Z S, DONG S F. Theoretical analysis of relationship between local contraction and integral forming in line heat forming[J]. Shipbuilding of China, 1995(2):90-100(in Chinese).
[25] LIU B, VILLAVICENCIO R, SOARES C G. Experi-mental and numerical analysis of residual stresses and strains induced during cold bending of thick steel plates[J]. Marine Structures, 2018, 57:121-132.
[26] PARSA H M, MOHAMMADI S V, MOHSENI E. Thickness change and springback of cold roll bonded aluminum/copper clad sheets in air bending process[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2017, 231(4):675-689.
[27] YAN Y, WAN M, WANG H B, et al. Optimization of press bend forming path of aircraft integral panel[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2):294-301.
Outlines

/