Special Topic of Guidance and Control Technology for Aerospace Vehicles

Composite fault tolerant control for aerospace vehicles with swing engines and aerodynamic fins

  • DONG Wang ,
  • QI Ruiyun ,
  • JIANG Bin
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China;
    2. Key Laboratory of Navigation, Control and Heath-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

Received date: 2020-01-22

  Revised date: 2020-02-11

  Online published: 2020-03-06

Supported by

National Natural Science Foundation of China (61873127, 61533009); Aeronautical Science Foundation of China (2017ZA52013);"Six Talents Peaks" High-level Talents Funding Project in Jiangsu Province of China (HKHT-010)

Abstract

Regarding the composite fault-tolerant control problem of direct force and aerodynamic force, a fault-tolerant control strategy based on the adaptive sliding mode is designed for space vehicles with engine thrust loss. First of all, for swing engines with thrust loss, considering the practical characteristics of X-type installation, the fault equivalent of the linearized pitch channel control model is carried out, the fault and disturbance information are estimated by the adaptive method, and the fault-tolerant controller is designed by comprehensively using the control surfaces and the swing of engines. Secondly, considering the influence of the longitudinal fault-tolerant control on the lateral stability of the aircraft, based on the adaptive backstepping method, the redundant control surfaces are used to eliminate the influence of the interference torque and ensure the lateral stability. Finally, based on the Lyapunov stability theory, the method is analyzed, and the simulation results verify the effectiveness of the designed composite fault-tolerant control scheme.

Cite this article

DONG Wang , QI Ruiyun , JIANG Bin . Composite fault tolerant control for aerospace vehicles with swing engines and aerodynamic fins[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(11) : 623850 -623850 . DOI: 10.7527/S1000-6893.2020.23850

References

[1] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013,39(11):1901-1913. SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica,2013, 39(11):1901-1913(in Chinese).
[2] 张超凡, 宗群, 董琦, 等. 高超声速飞行器模型及控制若干问题综述[J]. 信息与控制, 2017,46(1):90-102. ZHANG C F, ZONG Q, DONG Q, et al. A survey of models and control problems of hypersonic vehicles[J]. Information and Control, 2017, 46(1):90-102(in Chinese).
[3] ZONG Q, SHAO S. Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer[J]. ISA Transactions, 2016, 65:150-163.
[4] TIAN B, LU H, ZUO Z. Multivariable uniform finite-time output feedback reentry attitude control for RLV with mismatched disturbance[J]. Journal of the Franklin Institute, 2018, 355(8):3470-3487.
[5] TIAN B, CUI J, LU H, et al. Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons[J]. IEEE Transactions on Industrial Electronics, 2019,66(12):9428-9438.
[6] XU B, HUANG X, WANG D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1):162-174.
[7] 董朝阳, 王枫, 高晓颖, 等. 基于自适应滑模与模糊控制的导弹直接力/气动力复合控制系统优化设计[J]. 航空学报, 2008, 29(1):165-169. DONG C Y, WANG F, GAO X Y, et al. Missile reaction-jet/aerodynamic compound control system design based on adaptive sliding mode control and fuzzy logic[J]. Acta Aeronautica et Astronautica Sinica,2008, 29(1):165-169(in Chinese).
[8] SHEN H, LIU Y, CHEN B, et al. Control-relevant modeling and performance limitation analysis for flexible air-breathing hypersonic vehicles[J]. Aerospace Science and Technology, 2018, 76:340-349.
[9] CHAI R, SAVVARIS A, TSOURDOS A, et al. Optimal fuel consumption finite-thrust orbital hopping of aeroassisted spacecraft[J]. Aerospace Science and Technology, 2018, 75:172-182.
[10] ZHOU L, YIN L. Dynamic surface control based on neural network for an air-breathing hypersonic vehicle[J]. Optimal Control Applications and Methods, 2015, 36(6):774-793.
[11] JIANG B, XU D, SHI P, et al. Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage[J]. IET Control Theory & Applications, 2014, 8(9):658-666.
[12] WANG A, CHEN F, GONG H. Self-healing control for attitude system of hypersonic flight vehicle with body flap faults[J]. IEEE Access, 2018,6:19121-19130.
[13] JIANG B, ZHANG K, SHI P. Integrated fault estimation and accommodation design for discrete-time takagi-sugeno fuzzy systems with actuator faults[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(2):291-304.
[14] REN W, JIANG B, YANG H. Fault-tolerant control of singularly perturbed systems with applications to hypersonic vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6):3003-3015.
[15] SUN J, LI C, GUO Y, et al. Adaptive fault tolerant control for hypersonic vehicle with input saturation and state constraints[J]. Acta Astronautica, 2020, 167:302-313.
[16] 朱亮, 姜长生, 方炜. 空天飞行器六自由度数学建模研究[J]. 航天控制, 2006(4):39-44. ZHU L, JIANG C S, FANG W. Six-DOF modeling and simulation of a conceptual unmanned aerospace vehicle[J]. Aerospace Control, 2006(4):39-44(in Chinese).
[17] KESHMIRII S, COLGREN R, MIRMIRANI M. Six-DOF modeling and simulation of a generic hypersonic vehicle, for control and navigation purposes[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006:21-24.
[18] 陈洁, 沈如松, 宋超, 等. 近空间高超声速飞行器容错控制及制导技术[M]. 北京:北京航空航天大学出版社, 2016:31. CHEN J, SHEN R S, SONG C, et al. Fault tolerant control and guidance technology of hypersonic vehicle in near space[M]. Beijing:Beihang University Press, 2016:31(in Chinese).
[19] 王宗学. 飞行器控制系统概论[M]. 北京:北京航空航天大学出版社, 1993:25-88. WANG Z X. Introduction to aircraft control system[M].Beijing:Beihang University Press, 1993:25-88(in Chinese).
[20] YU Y, WANG H, LI N. Fault-tolerant control for over-actuated hypersonic reentry vehicle subject to multiple disturbances and actuator faults[J]. Aerospace Science and Technology, 2019,87(4):230-243.
[21] XU Y, JIANG B, TAO G, et al. Fault tolerant control for a class of nonlinear systems with application to near space vehicle[J]. Circuits, Systems, and Signal Processing, 2011, 30(3):655-672.
[22] CAO L, ZHANG D, TANG S, et al. A practical parameter determination strategy based on improved hybrid PSO algorithm for higher-order sliding mode control of air-breathing hypersonic vehicles[J]. Aerospace Science and Technology, 2016,59(12):1-10.
[23] 徐斌彦. 考虑控制方向不确定的高超声速飞行器自适应容错控制研究[D]. 南京:南京航空航天大学, 2019:32. XU B Y. Research on adaptive fault-tolerant control technology for HSV with uncertain control direction[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:32(in Chinese).
[24] 杨伟, 章卫国, 杨朝旭, 等. 容错飞行控制系统[M]. 西安:西北工业大学出版社, 2007:14-29. YANG W, ZHANG W G, YANG C X, et al. Fault tolerant flight control system[M]. Xi'an:Northwestern Polytechnical University Press, 2007:14-29(in Chinese).
[25] HU X, WU L, HU C, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2012, 349(2):559-577.
[26] ZHAO J, JIANG B. Adaptive sliding mode back-stepping control for near space vehicles considering engine faults[J]. Journal of Systems Engineering and Electronics, 2018(2):343-351.
[27] WANG J, WU Y, DONG X. Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer[J]. Nonlinear Dynamics, 2015, 81(3):1489-1510.
[28] QI R, TAO G, JIANG B. Fuzzy system identification and adaptive control[M]. Switzerland:Springer, 2019:118-119.
[29] TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control, 1997, 42(5):698-698.
[30] HU X, WU L, HU C, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2012, 349(2):559-577.
[31] TONG S, LI Y, FENG G, et al. Observer-based adaptive fuzzy back-stepping dynamic surface control for a class of MIMO nonlinear systems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2011, 41(4):1124-1135.
[32] BECHLIOULIS C, ROVITHAKIS G. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099.
Outlines

/