[1] LIU J J, REN X, YAN W, et al. Descent trajectory reconstruction and landing site positioning of Chang'E-4 on the lunar farside[J]. Nature Communications, 2019, 10(1):1-10.
[2] WU W R, LI C L, ZOU W, et al. Lunar farside to be explored by Chang'e-4[J]. Nature Geoscience, 2019, 12(4):222-223.
[3] MANKINS J C. Modular architecture options for lunar exploration and development[J]. Space Technology, 2002, 1-4:53-64.
[4] KENNEDY K J. Lunar lander strategies[C]//11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, 2008.
[5] HOWE A S, WILCOX B. Outpost assembly using the ATHLETE mobility system[C]//2016 IEEE Aerospace Conference, 2016.
[6] HUNG L Y, HOWE A S. A kit-of-parts approach to pressure vessels for planetary surface construction[C]//AIAA Space 2003 Conference & Exposition, 2003.
[7] BENTON M. Conceptual design of crew exploration lander for asteroid ceres and saturn moons rhea and iapetus[C]//48th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
[8] BRICKENSTAEDT B M, HOPKING J, KUTTER B F, et al. Lunar lander configurations incorporating accessibility, mobility, and centaur cryogenic propulsion experience[C]//AIAA Space Conference, 2006, 7284:6-9.
[9] HOWE A S. A modular habitation system for human planetary and space exploration[C]//45th International Conference on Environmental Systems (ICES2015), 2015.
[10] LIN R F, GUO W Z, LI M. Novel design of legged mobile landers with decoupled landing and walking functions containing a rhombus joint[J]. ASME Journal of Mechanisms and Robotics, 2018, 10(6):1-14.
[11] LIN R F, GUO W Z, CHEN X B, et al. Type synthesis of legged mobile landers with one passive limb using the singularity property[J]. Robotica, 2018, 36(12):1836-1856.
[12] 张志贤, 梁鲁, 果琳丽, 等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天, 2016, 22(2):202-209. ZHANG Z X, LIANG L, GUO L L, et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight, 2016, 22(2):202-209(in Chinese).
[13] HAJOS G A, JONES J A, BEHAR A, et al. An overview of wind-driven rovers for planetary exploration[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
[14] IQBALA J, KHANB Z H. The potential role of renewable energy sources in robot's power system:A case study of Pakistan[J]. Renewable and Sustainable Energy Reviews, 2017, 75:106-122.
[15] ANTOL J, CALHOUN P, FLICK J, et al. Low cost mars surface exploration:The mars tumbleweed:NASA/TM-2003-212411[R]. 2003.
[16] GOLOMBEK M P, ANDERSON R C, RARNES J R, et al. Overview of the mars pathfinder mission:launch through landing, surface operations, data sets, and science results[J]. Journal of Geophysical Research E:Planets, 1999, 104(E4):8523-8553.
[17] JUSTUS C G, JOHNSON D L. Mars global reference atmosphere model 2001 version (Mars-GRAM 2001):user's guide:NASA/TM-2001-210961[R]. 2001.
[18] CALHOUN P, HARRIS P, RAISZADEH B, et al. Conceptual design and dynamics testing and modeling of a mars tumbleweed rover[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
[19] HILLE C, MOODY C, ROSE S, et al. Wind powered martian robot-midterm report[R]. 2001.
[20] SHAH M. Dynamic and aerodynamic modeling of the mars tumbleweed rover[D]. Raleigh:North Carolina State University, 2019:48-52.
[21] ESTIER T, SIEGWART R. Innovative locomotion concept for long-range mission and study of martian wind[C]//Proceedings of the 6th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), 2000.
[22] WANG H H, YANG B G, JONES J. Mobility analysis of an inflated tumbleweed ball under wind loads[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.
[23] APOSTOLOPOULOS D, WAGNER M D, HEYS S, et al. Results of the inflatable robotic rover testbed:CMU-RI-TR-03-18[R]. Pittsburgh:Robotics Institute, Carnegie Mellon University, 2003.
[24] ANTOL J. A new vehicle for planetary surface exploration:The mars tumbleweed[C]//1 st Space Exploration Conference:Continuing the Voyage of Discovery, 2005.
[25] OBERTH J. The moon car[R]. New York:Harper and Brothers, 1959.
[26] KUBOTA T, YOSHIMITSU T. Intelligent unmanned explorer for deep space exploration[C]//Proceedings of the International Conference on Intelligent Unmanned System (ICIUS 2007), 2008.
[27] GRIMM C D, SCHRODER S, WITTE L, et al. Size matters-the shell lander concept for exploring medium-size airless bodies[C]//69th International Astronautical Congress (IAC), 2018.
[28] MI H T, VOLODYMYR B, CHRISTIAN G, et al. MASCOT-The mobile asteroid surface scout onboard the Hayabusa 2 mission[J]. Space Science Reviews, 2017, 208(1-4):339-374.
[29] GRIMM C D, GRUNDMANN J T, HENDRIKSE J, et al. From idea to flight-a review of the mobile asteroid surface scout (MASCOT) development and a comparison to historical fast-paced space programs[J]. Progress in Aerospace Sciences, 2019, 104(6):20-39.
[30] PAVONE M, CASTILLO-ROGEZ J C, NESNAS I A D, et al. Spacecraft/rover hybrids for the exploration of small solar system bodies[C]//2013 IEEE Aerospace Conference, 2013.
[31] UNDERWOOD C, PELLEGRINO S, LAPPAS V J, et al. Using CubeSat/micro-satellite technology to demonstrate the autonomous assembly of a reconfigurable space telescope (AAReST)[J]. Acta Astronautica, 2015, 114:112-122.
[32] HOCKMAN B J, FRICK A, REID R G, et al. Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies[J]. Journal of Field Robotics, 2017, 34(1):5-24.
[33] HOCKMAN B J, PAVONE M. Stochastic motion planning for hopping rovers on small solar system bodies[C]//The 18th International Symposium on Robotics Research (ISRR), 2017.
[34] HOCKMAN B J, REID R G, NESNAS I A, et al. Experimental methods for mobility and surface operations of microgravity robots[C]//International Symposium on Experimental Robotics, 2016:752-763.
[35] SAGDEEV R Z, ZAKHAROV A V. Brief history of the Phobos mission[J]. Nature, 1989, 341(6243):581-585.
[36] DUBOWSKY S, IAGNEMMA K, LIBERATORE S, et al. A concept mission:Microbots for large-scale planetary surface and subsurface exploration[C]//AIP Conference Proceedings, 2005.
[37] KALITA H, GHOLAP A S, THANGAVELAUTHAM J. Dynamics and control of a hopping robot for extreme environment exploration on the moon and mars[C]//IEEE Aerospace Conference Proceedings, 2019.
[38] TSUKAGOSHI H, SASAKI M, KITAGAWA A, et al. Jumping robot for rescue operation with excellent traverse ability[C]//International Conference on Advance Robotics, 2005:841-848.
[39] SALTON J R, BUERGER S, MARRON L, et al. Urban hopper[C]//Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE), 2010.
[40] GAJAMOHAN M, MUEHLEBACH M, WIDMER T, et al. The Cubli:A reaction wheel based 3D inverted pendulum[C]//Proceedings of the European Control Conference (ECC), 2013.
[41] SINGH R, TAYAL V K, SINGH H P. A review on Cubli and non linear control strategy[C]//1 st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016.
[42] ROMANISHIN J W, GILPIN K, CLAICI S, et al. 3D M-Blocks:Self-reconfiguring robots capable of locomotion via pivoting in three dimensions[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), 2015:1925-1932.
[43] OZDEMIR A, ROMANISHIN J W, GROB R, et al. Decentralized gathering of stochastic, oblivious agents on a grid:A case study with 3D M-Blocks[C]//Proceedings of the 2nd IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS'19), 2019.
[44] HALDANE D W, PLECNIK M M, YIM J K, et al. Robotic vertical jumping agility via series-elastic power modulation[J]. Science Robotics,2016,1(1):eaag2048.
[45] LIBBY T, JOHNSON A M, SIU E C, et al. Comparative design, scaling, and control of appendages for inertial reorientation[J]. IEEE Transactions on Robotics, 2016, 32(6):1380-1398.
[46] KINJO T, AOKI T. Realization of jumping motion for walking robot with spherical outer shell[C]//The 4th International Conference on Design Engineering and Science (ICDES 2017), 2017.
[47] VIDYASAGAR A, ZUFFEREY J C, FLOREANO D, et al. Performance analysis of jump-gliding locomotion for miniature robotics[J]. Bioinspiration & Biomimetics, 2014, 10(2):1-12.
[48] HERRMANN F, KUB S, SCHAFER B. Mobility challenges and possible solutions for low-gravity planetary body exploration[C]//11th Symposium on Advanced Space Technologies in Robotics and Automation:ASTRA, 2011.
[49] FULLER R B, APPLEWHITE E J, KENNER H, et al. Synergetics:Explorations in the geometry of thingking[M]. London:Macmillan Publishing Co. Inc, 1975:1-30.
[50] PUGH A. An introduction to tensegrity[M]. Berkeley:University of California Press, 1976:103-157.
[51] MOTRO R. Tensegrity structural systems for the future[M]. Oxford:Butterworth-Heinemann, 2006:1-257.
[52] ROTH B, WHITELEY W. Tensegrity frameworks[J]. Transactions of the American Mathematical Society, 1981, 265(2):419-446.
[53] CONNELLY R, BACK A. Mathematics and tensegrity[J]. American Scientist, 1998, 86(2):142-151.
[54] SHIBATA M, HIRAI S. Rolling locomotion of deformable tensegrity structure[J]. Mobile Robotics, 2009, 19(6):479-486.
[55] HIRAI S, IMUTA R. Dynamic modeling of tensegrity robots rolling over the ground[C]//International Conference on Computational Methods (ICCM2014), 2014.
[56] WANG Z J, LI K, HE Q G, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity[J]. Advanced Materials, 2019, 31(7):1-8.
[57] MCBRIDE M K, MARTINEZ A M, COX L, et al. A readily programmable, fully reversible shape-switching material[J]. Science Advances, 2018, 4(8):1-7.
[58] CHUNG Y S, LEE J H, JANG J H, et al. Jumping tensegrity robot based on torsionally prestrained SMA springs[J]. ACS Applied Materials & Interfaces, 2019, 11(43):40793-40799.
[59] PAUL C, ROBERTS J W, LIOSON H, et al. Gait production in a tensegrity based robot[C]//Proceedings of 12th International Conference on Advanced Robotics, 2005:216-222.
[60] CALUWAERTS K, DESPRAZ J, ISCEN A, et al. Design and control of compliant tensegrity robots through simulation and hardware validation[J]. Journal of the Royal Society Interface, 2014, 11(98):1-14.
[61] CALUWAERTS K. Design and computational aspects of compliant tensegrity robots[D]. Ghent:Ghent University, 2014:127-158.
[62] BRUCE J. Design, building, and testing of SUPERball:A tensegrity robot to enable space exploration[D]. Santa Cruz:UC Santa Cruz, 2016:33-46.
[63] SABELHAUS A P, BRUCE J, CALUWAERTS, et al. System design and locomotion of SUPERball, an untethered tensegrity robot[C]//IEEE International Conference on Robotics and Automation (ICRA), 2015.
[64] ISCEN A, CALUWAERTS K, BRUCE J, et al. Learning tensegrity locomotion using open-loop control signals and coevolutionary algorithms[J]. Artificial Life, 2015, 21(2):119-140.
[65] SUNSPIRAL V, GOROSPE G, BRUCE J, et al. Tensegrity based probes for planetary exploration:Entry, descent and landing (EDL) and surface mobility analysis[C]//The 10th International Planetary Probe Workshop (IPPW), 2013.
[66] KIM K, AGOGINO A K, AGOGINO A M. Emergent form-finding for center of mass control of ball-shaped tensegrity robots[C]//International Conference on Autonomous Agents and Multiagent Systems, 2015.
[67] KIM K, AGOGINO A K, TOGHYAN A, et al. Robust learning of tensegrity robot control for locomotion through form-finding[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015:5824-5831.
[68] CHEN L H, KIM K, TANG E, et al. Soft spherical tensegrity robot design using rod-centered actuation and control[J]. Journal of Mechanisms and Robotics, 2017, 9(2):1-9.
[69] KIM K. On the locomotion of spherical tensegrity robots[D]. Berkeley:University of California, 2016:9-22.
[70] CHEN L H, CERA B, ZHU E L, et al. Inclined surface locomotion strategies for spherical tensegrity robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.
[71] KINJO T, AOKI T. Realization of jumping motion for walking robot with spherical outer shell[C]//The 4th International Conference on Design Engineering and Science(ICDES 2017), 2017.
[72] RIEFFEL J, MOURET J B. Adaptive and resilient soft tensegrity robots[J]. Soft Robotics, 2018, 5(3):1-12.
[73] 李团结, 车明奎. 张拉整体结构外力与形变间关系分析及实验验证[J]. 西安电子科技大学学报, 2017, 44(1):24-28. LI T J, CHE M K. Analysis and experimental verification of relationship between external force and deformation of tensegrity structures[J]. Journal of Xidian University, 2017, 44(1):24-28(in Chinese).
[74] LUO A N, LIU H P. Analysis for feasibility of the method for bars driving the ball tensegrity robot[J]. Journal of Mechanisms and Robotics, 2017, 9(5):051010.
[75] WANG Y F, XU XIAN. Prestress design of tensegrity structures using semidefinite programming[J]. Advances in Civil Engineering, 2019:1-9.
[76] 解一鸣. 球形张拉整体机器人滚动分析与控制研究[D]. 哈尔滨:哈尔滨工业大学, 2018:58-66. XIE Y M. Analysis and control about rolling motion of spherical tensegrity robot[D]. Harbin:Harbin Institute of Technology, 2018:58-66(in Chinese).
[77] 杜汶娟, 马书根, 李斌, 等. 可变结构体机器人滚动步态参数优化. 机械工程学报[J]. 2016, 52(17):127-136. DU W J, MA S G, LI B, et al. Method to seek the deformed shape and to find the rolling direction of tensegrity robots[J]. Journal of Mechanical Engineering, 2016, 52(17):127-136(in Chinese).
[78] DU W J, MA S G, LI B. Force analytic method for rolling gaits of tensegrity robots[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2249-2259.
[79] CHANG J, LI B, DU W J. The path planning method of tensegrity robot based on A* algorithm[C]//IEEE 8th Annual International Conference on CYBER Tech-nology in Automation, Control, and Intelligent Systems, 2018, 1502-1507.
[80] KARRAS J T, FULLER C L, CARPENTER K C, et al. Pop-up mars rover with textile-enhanced rigid-flex PCB body[C]//2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
[81] 叶培建, 于登云, 孙泽洲, 等. 中国月球探测器的成就与展望[J]. 深空探测学报, 2016, 3(4):323-333. YE P J, YU D Y, SUN Z Z. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration, 2016, 3(4):323-333(in Chinese).