[1] 邵青, 何宇廷. 复合材料加筋板剪切稳定性研究[J].航空精密制造技术, 2010, 46(6):46-48. SHAO Q, HE Y T. Study on shear stability performance of composite stiffened panel[J]. Aviation Precision Manufacturing Technology, 2010, 46(6):46-48(in Chinese).
[2] 崔德刚. 结构稳定性设计手册[M]. 北京:航空工业出版社, 2006. CUI D G. Design manual for structural stability[M]. Beijing:Aviation Industry Press, 2006(in Chinese).
[3] MURPHY A, MCCUNE W, QUINN D, et al. The characterization of friction stir welding process effects on stiffened panel buckling performance[J]. Thin-Walled Structures, 2007, 45(3):339-351.
[4] MO Y M, GE D Y, HE B L. Experiment and optimization of the hat-stringer-stiffened composite panels under axial compression[J]. Composites Part B:Engineering, 2016, 84:285-293.
[5] XU M C, SONG Z J, ZHANG B W, et al. Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[J]. Ocean Engineering, 2018, 162:161-175.
[6] OZDEMIR M, ERGIN A, YANAGIHARA D, et al. A new method to estimate ultimate strength of stiffened panels under longitudinal thrust based on analytical formulas[J]. Marine Structures, 2018, 59:510-535.
[7] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报,2020,37(6):1321-1333. SHI J W, ZHAO J, LIU C J, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica,2020,37(6):1321-1333.
[8] BAI R X, LEI Z K, WEI X, et al. Numerical and experimental study of dynamic buckling behavior of a J-stiffened composite panel under in-plane shear[J]. Composite Structures, 2017, 166:96-103.
[9] MURPHY A, PRICE M, LYNCH C, et al. The computational post-buckling analysis of fuselage stiffened panels loaded in shear[J]. Thin-Walled Structures, 2005, 43(9):1455-1474.
[10] WANG F, KEE PAIK J, JU KIM B, et al. Ultimate shear strength of intact and cracked stiffened panels[J]. Thin-Walled Structures, 2015, 88:48-57.
[11] SU Y R, GUAN Z D, WANG X, et al. Buckling and post-buckling behavior of titanium alloy stiffened panels under shear load[J]. Chinese Journal of Aeronautics, 2019, 32(3):619-626.
[12] 张彦军, 朱亮, 杨卫平, 等. 舰载机机身加筋壁板屈曲疲劳试验研究[J]. 航空学报, 2019, 40(4):622276. ZHANG Y J, ZHU L, YANG W P, et al. Buckling fatigue test of fuselage stiffened panel for carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622276(in Chinese).
[13] 刘存, 张磊, 杨卫平. 舰载机壁板剪切后屈曲承载能力预测与试验验证[J]. 航空学报, 2019, 40(4):622300. LIU C, ZHANG L, YANG W P. Post-buckling study and test verification of carrier-based aircraft wing stiffened panels under shear load[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622300(in Chinese).
[14] ZHANG T J, LI S L, CHANG F, et al. An experimental and numerical analysis for stiffened composite panel subjected to shear loading in hygrothermal environment[J]. Composite Structures, 2016, 138:107-115.
[15] LEI X K, BAI R X, TAO W, et al. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear[J]. Optics and Lasers in Engineering, 2016, 87:111-119.
[16] 汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8):222889. WANG H B, LIN G W, HAN X B, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222889(in Chinese).
[17] 徐进军, 江茫, 熊纯. 铝锂合金及其在航空航天领域成形技术的研究进展[J]. 热加工工艺,2019,48(24):11-16. XU J J, JIANG M, XIONG C. Research progress of Al-Li alloys and its forming technology for aeronautic and astronautic industry[J]. Hot Working Technology,2019,48(24):11-16.
[18] 张显峰, 陆政, 高文理, 等. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017(7):11-16. ZHANG X F, LU Z, GAO W L. et al. Anisotropyof 2A66 Al-Li alloy sheet[J]. Journal of Materials Engineering, 2017(7):11-16(in Chinese).
[19] GAO C, LUAN Y, YU J C, et al. Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2196-2202.
[20] ZHONG J, ZHONG S, ZHENG Z Q, et al. Fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2):303-309.
[21] 金阳, 王少刚, 黄炜, 等. 新型铝锂合金激光焊接数值模拟分析及其试验验证[J]. 热加工工艺, 2019, 48(21):163-169. JIN Y, WANG S G, HUANG W, et al. Numerical simulation analysis and experimental verification of laser beam welding of new type Al-Li alloy[J]. Hot Working Technology, 2019, 48(21):163-169(in Chinese).
[22] LI Y, SHI Z, LIN J, et al. FE simulation of asymmetric creep-ageing behaviour of AA2050 and its application to creep age forming[J]. International Journal of Mechanical Sciences, 2018, 140:228-240.
[23] CHU Q, LI W Y, YANG X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(10):1739-1746.
[24] 张华, 孔德跃, 陈雪峰, 等. 2A97铝锂合金搅拌摩擦焊[J]. 焊接学报, 2012, 33(5):41-44. ZHANG H, KONG D Y, CHEN X F, et al. Study on friction stir welding of 2A97 Al-Li alloy[J]. Transactions of the China Welding Institution, 2012, 33(5):41-44(in Chinese).
[25] 郑修麟. 材料的力学性能[M]. 西安:西北工业大学出版社, 2007. ZHENG X L. Mechanical behavior of material[M]. Xi'an:Northwestern Polytechnical University Press, 2007(in Chinese).
[26] 沈世钊, 陈昕. 网格结构稳定性[M]. 北京:科学出版社, 1999. SHEN S Z, CHEN X. Stability of net-shell structure[M]. Beijing:Science Publishing, 1999(in Chinese).
[27] 初冠南, 张彩英, 鲁国春. 初始缺陷对耐压结构承载性能影响[J]. 精密成形工程, 2014, 6(5):80-84. CHU G N, ZHANG C Y, LU G C. Influence of initial imperfections on the bearing capacity of pressure resistant structure[J]. Journal of Netshape Forming Engineering, 2014, 6(5):80-84(in Chinese).
[28] WITTENBERG T C, BATEN T J V, BOER A D. Design of fibre metal laminate shear panels for ultra-high capacity aircraft[J]. Aircraft Design, 2001, 4(2-3):99-113.