[1] THIPPHAVONG D P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations[C]//2018 Aviation Technology, Integration, and Operations Conference, 2018:3676.
[2] Uber Elevate. Fast-forwarding to a future of on-demand urban air transportation[EB/OL].(2016-10-27)[2019-12-05]. https://d1nyezh1ys8wfo.cloudfront.net/static/PDFs/Elevate%2BWhitepaper.pdf.
[3] BALAKRISHNAN K, POLASTRE J, MOOBERRY J, et al. Blueprint for the sky[EB/OL].[2019-12-05].https://storage.googleapis.com/blueprint/Airbus_UTM_Blueprint.pdf.
[4] VASCIK P D, HANSMAN R J, DUNN N S. Analysis of urban air mobility operational constraints[J]. Journal of Air Transportation, 2018, 26(4):133-146.
[5] YU X, ZHANG Y. Sense and avoid technologies with applications to unmanned aircraft systems:Review and prospects[J]. Progress in Aerospace Sciences, 2015, 74:152-166.
[6] HUNTER G, WEI P. Service-oriented separation assurance for small UAS traffic management[C]//2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway:IEEE Press, 2019:1-11.
[7] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
[8] 刘慧颖,白存儒,杨广珺. 无人机自主防撞关键技术与应用分析[J]. 航空工程进展, 2014, 5(2):141-147. LIU H Y, BAI C R, YANG G J. Application and analysis discussion of autonomous collison avoidance techniques for unmanned aerial vehicle[J]. Advances in Aeronautical Science and Engineering, 2014, 5(2):141-147(in Chinese).
[9] 朱代武. 低空空域飞行冲突避让算法[J]. 交通运输工程学报, 2005(3):73-76. ZHU D W. Calculational methods of avoiding flight conflict in low altitude airspace[J]. Journal of Traffic and Transportation Engineering, 2005(3):73-76(in Chinese).
[10] PARK J W, OH H D, TAHK M J. UAV collision avoidance based on geometric approach[C]//2008 SICE Annual Conference. Piscataway:IEEE Press, 2008:2122-2126.
[11] TANG J, ALAM S, LOKAN C, et al. A multi-objective approach for dynamic airspace sectorization using agent based and geometric models[J]. Transportation Research Part C:Emerging Technologies, 2012, 21(1):89-121.
[12] 彭良福,林云松. 空中自动防撞系统最优逃避机动的确定[J]. 控制理论与应用, 2010, 27(11):1575-1579. PENG L F, LIN Y S. Determination of optimal escape maneuver for automatic air collision avoidance system[J]. Control Theory & Applications, 2010, 27(11):1575-1579(in Chinese).
[13] LIU J Y, GUO Z Q, LIU S Y. The simulation of the UAV collision avoidance based on the artificial potential field method[C]//Advanced Materials Research, 2012, 591-593:1400-1404.
[14] SUN J, TANG J, LAO S. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5:18382-18390.
[15] YANG Z, LI C, LIU G. Cooperative 4D guidance for multiple UAVs based on tensor field[C]//2018 13th World Congress on Intelligent Control and Automation (WCICA). Piscataway:IEEE Press, 2018:1709-1714.
[16] 梁宵,王宏伦,李大伟,等. 基于流水避石原理的无人机三维航路规划方法[J]. 航空学报. 2013, 34(7):1670-1681. LIANG X, WANG H L, LI D W, et al. Three-dimensional path planning for unmanned aerial vehicles based on principles of stream avoiding obstacles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1670-1681(in Chinese).
[17] WANG H, LYU W, YAO P, et al. Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system[J]. Chinese Journal of Aeronautics, 2015, 28(1):229-239.
[18] ALONSO-AYUSO A, ESCUDERO L F, MARTIN-CAMPO F J. Collision avoidance in air traffic management:A mixed-integer linear optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1):47-57.
[19] YANG H, ZHAO Y. Trajectory planning for autonomous aerospace vehicles amid known obstacles and conflicts[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):997-1008.
[20] CEKMEZ U, OZSIGINAN M, SAHINGOZ O K. Multi colony ant optimization for UAV path planning with obstacle avoidance[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway:IEEE Press, 2016:47-52.
[21] SHAKHATREH H, SAWALMEH A H, AL-FUQAHA A, et al. Unmanned aerial vehicles (UAVs):A survey on civil applications and key research challenges[J]. IEEE Access, 2019, 7:48572-48634.
[22] GUPTA J K, EGOROV M, KOCHENDERFER M. Cooperative multi-agent control using deep reinforcement learning[C]//International Conference on Autonomous Agents and Multiagent Systems. Berlin:Springer, 2017:66-83.
[23] CHEN L, PAPANDREOU G, KOKKINOS I, et al. Deeplab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.
[24] YANG X, DENG L, WEI P. Multi-agent autonomous on-demand free flight operations in urban air mobility[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019:3520.
[25] BAI H, HSU D, KOCHENDERFER M J, et al. Unmanned aircraft collision avoidance using continuous-state POMDPs[J]. Robotics:Science and Systems VⅡ, 2012, 1:1-8.
[26] MUELLER E R, KOCHENDERFER M. Multi-rotor aircraft collision avoidance using partially observable Markov decision processes[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA,2016:3673.
[27] YANG X, WEI P. Autonomous on-demand free flight operations in urban air mobility using Monte Carlo tree search[C]//International Conference on Research in Air Transportation (ICRAT), 2018.
[28] BELLMAN R. A Markovian decision process[J]. Journal of Mathematics and Mechanics, 1957, 6:679-684.
[29] KOCSIS L, SZEPESVÁRI C, WILLEMSON J. Improved Monte-Carlo search[D]. Tartu:University of Tartu, 2006.
[30] KOCSIS L, SZEPESVÁRI C. Bandit based monte-carlo planning[C]//European Conference on Machine Learning. Berlin:Springer, 2006:282-293.
[31] AUER P, CESA-BIANCHI N, FISCHER P. Finite-time analysis of the multiarmed bandit problem[J]. Machine Learning, 2002, 47(2-3):235-256.
[32] BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1):1-43.
[33] HARABOR D D, GRASTIEN A. Online graph pruning for pathfinding on grid maps[C]//Twenty-Fifth AAAI Conference on Artificial Intelligence. Palo Alto:AAAI, 2011.
[34] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
[35] BOSSON C, LAUDERDALE T A. Simulation evaluations of an autonomous urban air mobility network management and separation service[C]//2018 Aviation Technology, Integration, and Operations Conference, 2018:3365.
[36] DUBINS L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of Mathematics, 1957, 79(3):497-516.
[37] ONG H Y, KOCHENDERFER M J. Markov decision process-based distributed conflict resolution for drone air traffic management[J]. Journal of Guidance, Control, and Dynamics, 2017,40(1):69-80.