To provide an insight into the instability of oblique detonation waves and the evolution law of cellular-like structures, a numerical study on the curvature effect of wedge induced oblique detonation waves is conducted with different chemical kinetic parameters (heat release quality, heat release ratio and reference lengths of chemical reaction zones). The solver based on the Weighted Essentially Non-Oscillatory (WENO) scheme processed spatial discretization and additive Runge-Kutta method processed time discretization is used here. The numerical results show that the trend of the wave angles along the oblique detonation wave front can be divided into three regions: Region I, where the wave angles decrease smoothly; Region II, in which the wave angles experience a steep increase first and followed then by decay; Region III, where the wave angles exhibit an oscillation. The normal velocity-curvature relation in Region I is a quasi-vertical line with the flow field being a decaying oblique detonation wave. A "D" shaped curve consisting of a polar line, a smooth horizon curve and a quasilinear curve can be found in the normal velocity-curvature diagram for Region III, where a cycle evolution of cellular-like structures occurs in the front. Region II is deemed as the coupling effect of Regions I and III. Different chemical kinetic parameters bring diverse effects on the oblique detonation wave front.
[1] LEE J H S. The detonation phenomenon[M].Cambridge:Cambridge University Press,2008.
[2] WOLANSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
[3] CHAN J, SISLIAN J P, ALEXANDER D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5):1125-1134.
[4] 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2):121438. XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121438(in Chinese).
[5] 沈洋, 刘凯欣, 陈璞, 等. 采用改进的CE/SE方法模拟方管中氢氧爆轰波的稳定传播结构[J]. 航空学报, 2019, 40(5):122591. SHEN Y, LIU K X, CHEN P, et al. Simulations of stable structure in oxy-hydrogen detonation propagation in square ducts using an improved CE/SE scheme[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122591(in Chinese).
[6] 徐灿, 马虎, 李健, 等. 旋转爆震发动机火焰与压力波传播特性[J]. 航空学报, 2017, 38(10):121226. XU C, MA H, LI J, et al. Propagation property of flame and pressure wave in rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121226(in Chinese).
[7] TENG H H, JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713:659-669.
[8] MIAO S, ZHOU J, LIU S, et al. Formation mechanisms and characteristics of transition patterns in oblique detonations[J]. Acta Astronautica, 2018, 142:121-129.
[9] ZHANG Y, YANG P, TENG H, et al. Transition between different initiation structures of wedge-induced oblique detonations[J]. AIAA Journal, 2018, 56(10):4016-4023.
[10] CHOI J Y, KIM D W, JEUNG I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2):2473-2480.
[11] VERREAULT J, HIGGINS A J, STOWE R A. Formation of transverse waves in oblique detonations[J]. Proceedings of the Combustion Institute, 2013, 34(2):1913-1920.
[12] TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744:111-128.
[13] LIU Y, HAN X, YAO S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge[J]. Shock Waves, 2016, 26(6):729-739.
[14] KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles[J]. AIAA Journal, 2001, 39(8):1553-1561.
[15] BDZIL J B, STEWART D S. The dynamics of detonation in explosive systems[J]. Annual Review of Fluid Mechanics, 2006, 39(1):263-292.
[16] YAO J, STEWART D S. On the normal detonation shock velocity-curvature relationship for materials with large activation energy[J]. Combustion and Flame, 1995, 100(4):519-528.
[17] STEWART D S, YAO J. The normal detonation shock velocity-curvature relationship for materials with nonideal equation of state and multiple turning points[J]. Combustion and Flame, 1998, 113(1-2):224-235.
[18] CHIQUETE C, SHORT M, QUIRK J J. The effect of curvature and confinement on gas-phase detonation cellular stability[J]. Proceedings of the Combustion Institute, 2019, 37(3):3565-3573.
[19] JACKSON S I, CHIQUETE C, SHORT M. An intrinsic velocity-curvature-acceleration relationship for weakly unstable gaseous detonations[J]. Proceedings of the Combustion Institute, 2019, 37(3):3601-3607.
[20] LEUNG C, RADULESCU M I, SHARPE G J. Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations[J]. Physics of Fluids, 2010, 22(12):126101.
[21] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[22] ACKER F, BORGES R B R, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313:726-753.
[23] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
[24] EINFELD B. On Godunov-type methods for gas dynamics[J]. SIAM Journal on Numerical Analysis, 1988, 25(2):294-318.
[25] HINDMARSH A C, BROWN P N, GRANT K E, et al. SUNDIALS:Suite of nonlinear and differential/algebraic equation solvers[J]. ACM Transactions on Mathematical Software, 2005, 31(3):363-396.
[26] KENNEDY C A, CARPENTER M H. Additive Runge-Kutta schemes for convection-diffusion-reaction equations[J]. Applied Numerical Mathematics, 2003, 44:139-181.
[27] MEDVEDEV A E. Reflection of an oblique shock wave in a reacting gas with a finite relaxation-zone length[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(2):211-218.
[28] PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal Propulsion, 1991, 7(5):837-845.
[29] OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352:1-25.