Fluid Mechanics and Flight Mechanics

Numerical and experimental research on interstage pressure drop distribution affecting factors of multi-stage brush seals

  • ZHAO Huan ,
  • JIAO Zhongze ,
  • SUN Dan ,
  • LIU Yongquan ,
  • ZHAN Peng ,
  • XIN Qi
Expand
  • 1. School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China;
    2. Shenyang Engine Design and Research Institute, Aero Engine(Group) Corporation of China, Shenyang 110015, China;
    3. Key Lab for Power Transmission of Aero Engine, Aero Engine(Group) Corporation of China, Shenyang 110015, China

Received date: 2019-10-08

  Revised date: 2020-02-07

  Online published: 2020-02-06

Supported by

National Natural Science Foundation of China (51675351); China Postdoctoral Science Foundation (2018M633572); College Innovation Talent Support Program of Liaoning Province (LR2016033)

Abstract

The pressure drop distribution between the multi-stage brush seals directly affects the seal characteristics and the service life of the brush seals. The existing multi-stage brush seals structure have the problem that the pressure drop is unbalanced at different stages, leading to premature seal failure. In this paper, a three-dimensional fluid-solid interaction multi-stage brush seals model is established, and a multi-stage brush seals experimental device is designed. Based on the mutual verification of numerical calculation and experimental test results, the influence law of working condition parameters and structural parameters on the interstage pressure drop distribution of multi-stage brush seals is investigated. The mechanism of interstage pressure drop imbalance of multi-stage brush seals is revealed. The results show that under the research conditions in this paper, the pressure drop ratio of the two-stage brush seals of the same structure are 32%-35% and 65%-68%, and the pressure drop ratio of the three-stage brush seals are different:21%-27%, 27%-32%, 41%-52%. The pressure drop of the multi-stage brush seals is gradually increased, and the pressure ratio of the inlet and outlet has little effect on the distribution of interstage pressure drop. By increasing the radial gap between the bristle tow and the rotor surface, the gap between the bristles and the height of the backplate can improve the pressure drop distribution of each level, and the amount of leakage will also increase. The main reason that affects the pressure drop balance of the multi-stage brush seals is the uneven increase of volume flow rate step by step, and the pressure drop of each stage increases with the increase of the volume flow unevenness step by step. Increasing the cross-sectional area of the downstream level can effectively reduce the volume flow rate and balance the pressure drop between multi-stage brush seals. The research results in this paper provide a theoretical basis for the design of multi-stage brush seals structure.

Cite this article

ZHAO Huan , JIAO Zhongze , SUN Dan , LIU Yongquan , ZHAN Peng , XIN Qi . Numerical and experimental research on interstage pressure drop distribution affecting factors of multi-stage brush seals[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(10) : 123544 -123544 . DOI: 10.7527/S1000-6893.2019.23544

References

[1] 李军, 李志刚, 张元桥, 等. 刷式密封技术的研究进展[J].航空发动机, 2019, 45(2):74-84. LI J, LI Z G, ZHANG Y Q, et al. Research progress of brush seal technology[J].Aeroengine, 2019, 45(2):74-84(in Chinese).
[2] DIN S, DEMIROGLU M, YURNQUIST N, et al. Fundamental design issues of brush seals for industrial applications[J].Journal of Turbomachinery,2002,124(2):293-300.
[3] CHUPP R E, GHASRIPOOR F, TURNQUIST N, et al. Advanced seals for industrial turbine applications:dynamics seal development[J].Journal of Propulsion and Power,2002, 18(2):1260-1266.
[4] 吴施志, 江平, 力宁, 等. 刷式密封摩擦生热温度场数值计算及试验[J].航空动力学报, 2019, 34(4):737-743. WU S Z, JIANG P, LI N, et al. Numerical calculation and experiment on temperature field of friction heat generation of brush seal[J].Journal of Aerospace Power, 2019, 34(4):737-743(in Chinese).
[5] 黄首清, 索双富, 李永健, 等. 刷式密封流场和温度场的3维数值计算[J].清华大学学报(自然科学版), 2014, 54(6):805-810. HUANG S Q, SUO S F, LI Y J, et al. Numerical predictions of the flow and temperature distributions in a threedimensional brush seal model[J].Journal of Tsinghua University (Science and Technology), 2014, 54(6):805-810(in Chinese).
[6] 邱波, 李军. 基于多孔介质局部非热平衡方法的刷式密封耦合传热特性[J].航空动力学报, 2015, 30(5):1067-1075. QIU B, LI J. Conjugate heat transfer characteristics of brush seal based on local thermal non-equilibrium porous medium approach[J].Journal of Aerospace Power, 2015, 30(5):1067-1075(in Chinese).
[7] 邱波, 李军, 丰镇平. 考虑刷丝变形的刷式密封摩擦热效应研究[J].工程热物理学报, 2013, 34(11):2030-2034. QIU B, LI J, FENG Z P. Investigations on frictional heat generation of brush seals with consideration of bristle deflections[J].Journal of Engineering Thermophysics, 2013, 34(11):2030-2034(in Chinese).
[8] 刘璐园, 张元桥, 李军. 基于流固耦合方法的刷式密封刷丝变形及接触力特性的数值研究[J].燃气轮机技术, 2019, 32(1):1-7. LIU L Y, ZHANG Y Q, LI J. Numerical investigations on the bristle deformation and contact force characteristics of brush seals using fluid-structure coupling method[J].Gas Turbine Technology, 2019, 32(1):1-7(in Chinese).
[9] PUGACHEV A O, DECKNER M. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal[J].Mechanical Systems and Signal Processing, 2012, 31:143-154.
[10] 王凯杰, 杨义勇, 索双富, 等. 两级刷式密封的流动计算与系统参数的配置研究[J].润滑与密封, 2017, 42(10):43-47. WANG K J, YANG Y Y, SUO S F, et al. Analysis on flows of two-stage brush seals and research on configuration of system parameters[J].Lubrication Engineering, 2017, 42(10):43-47(in Chinese).
[11] 文龙, 王之栎, 丁蕾, 等. 双级低滞后刷式密封级间不均衡性分析[J].北京航空航天大学学报, 2014, 40(8):1154-1159. WEN L, WANG Z L, DING L, et al. Inter-stage imbalance analysis of two-stage low hysteresis brush seal[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8):1154-1159(in Chinese).
[12] 文龙, 王之栎. 双级低滞后刷式密封的温度场分析[J].中国新技术新产品, 2013(23):2-4. WEN L, WANG Z L. Temperature field analysis of two-stage low hysteresis brush seal[J].China New Technologies and Products, 2013(23):2-4(in Chinese).
[13] RABEN M, FRIEDRICHS J, HELMIS T, et al. Brush seals used in steam environments-chronological wear development and the impact of different seal designs[J].Journal of Engineering for Gas Turbines and Power, 2016, 139(5):051901.
[14] RABEN M, FRIEDRICHS J, FLEGLER J. Brush seal frictional heat generation-test rig design and validation under steam environment[J].Journal of Engineering for Gas Turbines and Power, 2016, 139(3):032502.
[15] 邱波, 李军, 冯增国, 等. 两级刷式密封泄漏特性的实验与数值研究[J].西安交通大学学报, 2013, 47(7):7-12. QIU B, LI J, FENG Z G, et al. Experimental and numerical investigations of the leakage characteristics of two-stage brush seal[J].Journal of Xi'an Jiaotong University, 2013, 47(7):7-12(in Chinese).
[16] 邱波, 李军. 刷式密封传热特性研究[J].西安交通大学学报, 2011, 45(9):99-105. QIU B, LI J. Investigation on the heat transfer characteristics of brush seals[J].Journal of Xi'an Jiaotong University, 2011, 45(9):99-105(in Chinese).
[17] 郎达学, 苏华. 表面织构靴底流体动压指尖密封的性能分析[J].航空学报, 2012, 33(8):1540-1546. LANG D X, SU H. Performance analysis of surface texture padded finger seal[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1540-1546(in Chinese).
[18] 王福军. 计算流体动力学分析[M]. 北京:清华大学出版社, 2004:34-36. WANG F J. Computational fluid dynamics analysis[M]. Beijing:Tsinghua University Press, 2004:34-36(in Chinese).
[19] 刘占生, 叶建槐. 刷式密封接触动力学特性研究[J].航空动力学报, 2002, 17(5):636-640. LIU Z S, YE J H. Research on structural dynamic characteristics of brush seals[J].Journal of Aerospace Power, 2002, 17(5):636-640(in Chinese).
[20] 王喜春, 苏华, 宗兆科. 周向收敛型动压式指尖密封的结构优化及其动态性能仿真[J].航空学报, 2011, 32(2):360-367. WANG X C, SU H, ZONG Z K. Structural optimization and dynamic simulation of circumferential convergent hydrodynamic finger seal[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(2):360-367(in Chinese).
[21] 孙丹, 刘宁宁, 胡广阳, 等. 考虑刷丝变形的刷式密封流场特性与力学特性流固耦合研究[J].航空动力学报, 2016, 31(10):2544-2553. SUN D, LIU N N, HU G Y, et al. Fluid-structure interaction investigation on the flow field and mechanical characteristic in brush seal with bristle deflections[J].Journal of Aerospace Power, 2016, 31(10):2544-2553(in Chinese).
[22] 孙丹, 卢江, 刘永泉, 等. 篦齿封严风阻温升特性研究[J].航空学报, 2018, 39(11):122348. SUN D, LU J, LIU Y Q, et al. Investigation on windage heating characteristics of labyrinth seals[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(11):122348(in Chinese).
[23] BORGUETA S J, BACH N R, CORREIA J J, et al.. Aerodynamic flutter of turbine brush seals:IMECE2017-73500[R]. New York:ASME, 2017.
[24] 张元桥, 闫嘉超, 李军. 考虑闭合效应的刷式密封泄漏特性研究[J].润滑与密封, 2017, 42(4):36-42. ZHANG Y Q, YAN J C, LI J. Investigations on leakage flow characteristics of brush seal with consideration of blow down effect[J].Lubrication Engineering, 2017, 42(4):36-42(in Chinese).
Outlines

/