Review

Review of aircraft battle damage assessment and repair estimation and design technology

  • ZU Guangran ,
  • PEI Yang ,
  • HOU Peng
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Electro-Optic Control Laboratory, Luoyang 471009, China

Received date: 2019-09-10

  Revised date: 2019-12-02

  Online published: 2020-01-19

Supported by

Aeronautical Science Foundation of China (20174123008, 20185153032);Research Funds for Interdisciplinary Subject of Northwestern Polytechnical University (19SH030401)

Abstract

Aircraft Battle Damage and Repair (ABDR) is one of the important means to improve aircraft survivability and combat capability. The research on ABDR technology covers the whole life stage of the aircraft. The research history and current advances are reviewed in this paper. The key points of ABDR system research are summarized from the aircraft battle damage assessment, aircraft design for battle damage repair, and aircraft battlefield rapid maintenance and support. Attentions are paid to the aircraft battle damage and repair pre-assessment technologies, field evaluation techniques of ABDR, the criteria and principles of aircraft design for battle field repair, evaluation method of aircraft design for battlefield damage and repair, aircraft expedient repair technologies, aircraft battle repair support method, etc. Furthermore, considering the system-of-system combat and intelligent combat environment in the future, the problems of aircraft battle damage and repair deserving further investigations are proposed, such as advanced materials structures aircraft battle damage and repair technologies, ABDR technology in helicopter, and the application of artificial intelligence in aircraft battle damage assessment and interdisciplinary technology in ABDR.

Cite this article

ZU Guangran , PEI Yang , HOU Peng . Review of aircraft battle damage assessment and repair estimation and design technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(6) : 523455 -523455 . DOI: 10.7527/S1000-6893.2019.23455

References

[1] 裴扬,宋笔锋,石帅. 飞机作战生存力分析方法研究进展与挑战[J]. 航空学报, 2016, 37(1):216-234. PEI Y, SONG B F, SHI S. Analysis method of aircraft combat survivability:Progress and challenge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):216-234(in Chinese).
[2] 李寿安,张恒喜,李曙林,等. 飞机生存力评估与综合权衡方法研究[J]. 航空学报, 2005, 26(1):23-26. LI S A, ZHANG H X, LI S L, et al. Research on aircraft survivability evaluation and synthetic tradeoff methods[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1):23-26(in Chinese).
[3] MCDONALD M W F. Aircraft battle damage repair capability:A key to combat sustainability[R]. Alabama:Air War College, 1983.
[4] MURRAY W. The role of german battle damage repair in the luftwaffe's conduct of the second World War[R]. Bethesda:Logistics Management Institute, 1988.
[5] SRULL D W, WALLICK D J, KAPLAN B J. Battle damage repair:An effective force multiplier[R]. Bethesda:Logistics Management Institute, 1991.
[6] 胡芳友,苏旭波,黄旭仁. 论飞机战伤抢修在现代战争中的重要意义[C]//中国航空学会2006年航空装备保障技术专题研讨会. 北京:中国航空学会, 2006. HU F Y, SU X B, HUANG X R. Comment to the importance meaning of aircraft battle damage repair in modern war[C]//2006 Seminar on Aeronautical Equipment Logistic Technology of CSAA. Beijing:Chinese Society of Aeronautics and Astronautics, 2006.
[7] SAMPATH S G. Aircraft battle damage repair(ABDR) strategies and techniques[R]. Jersey:NATO, 2010.
[8] Department of The US Air Force.Headquarter of US air force program management directive for aircraft battle damage repair[S]. Washington, D.C.:Department of the US Air Force, 1983.
[9] Department of Defense of United States. Technical manuals:Aircraft battle damage assessment and repair[S]:Dayton:Defense Quality and Standardization Office, 1996.
[10] Survivability/Vulnerability Information Analysis. Center. Aircraft battle damage repair:Volume 1, a survey of actual combat experience[S]:Dayton:Wright-Patterson Air Force Base, 1986.
[11] Headquarters of Department of the United States Army. Aircraft recovery operations[S]. Washington, D.C.:Headquarters of Department of the United States Army, 2008.
[12] KOVATCH D H. Modeling aircraft combat damage repair:annual reliability and maintainability symposium[C]//San Francisco:Institute of Electrical and Electronics Engineers, 1984.
[13] JEFFERY W H. Aircraft battle damage repair[J]. Aerospace America, 1992, 6(1):5-9.
[14] O'CONNELL P J, VOYLS D W. An overview of aircraft expedient repair[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials ConferenceDenver.Reston:AIAA, 2011.
[15] MOSELEY M W E. Aircraft battle damage repair:organic of CLSS support[R]. Maxwell:Air Command and Staff College, 1988.
[16] Department of the Air Force of United States. Aircraft battle damage repair[S]. Washington, D.C.:Defense Quality and Standardization Office, 1984.
[17] DJELLAL S, OUIBRAHIM A. Aerodynamic performances of battle-damaged and repaired wings of an aircraft model[J]. Journal of Aircraft, 2008, 45(6):2009-2023.
[18] HOLCOMB M D H. Aircraft battle damage repair for the 90s and beyond[R]. Maxwell:Air Force Material Command, 1994.
[19] Headquarters of Department of the United States Air Force. Recovery and battle damage assessment and repair[S]:Washington, D.C.:Headquarters of Department of the United States Air Force, 2006.
[20] 李曙林. 现代军用飞机战伤抢修研究[D]. 西安:西北工业大学, 2005. LI S L. Research on BDAR of modern military aircraft[D]. Xi'an:Northwestern Polytechnical University, 2005(in Chinese).
[21] 张建华. 飞机结构战伤抢修[M]. 北京:国防工业出版社, 2007. ZHANG J H. Battle damage repair of aircraft structure[M]. Beijing:National Defense Industry Press, 2007(in Chinese).
[22] 范强军,李曙林,周彬,等. 基于TFD的飞机战伤抢修技术体系的构建[J]. 航空维修与工程, 2015(2):50-53. FAN Q J, LI S L, ZHOU B, et al. Construction of aircraft battle damage repair technology system based on TFD[J]. Aviation Maintenance & Engineering, 2015(2):50-53(in Chinese).
[23] BARILE M. Expedient repair of a battle-damaged composite fixed-wing aircraft[D]. Naples:The University of Naples Federico II, 2016.
[24] XINOS J. What makes techo's tick?:The human factor in ADF aviation maintenance capability[M]. Fairbairn:Aerospace Centre RAAF Base, 2001.
[25] Air Force System Command. ABDR experience and planning in the israeli air force[R]. Prince George:Air Force System Command, 1982.
[26] 李曙林,侯满义,刘加丛,等. 飞机结构战伤评估与修理决策支持系统中模型库的构建[J]. 空军工程大学学报(自然科学版), 2006, 7(2):1-3. LI S L, HOU M Y, LIU J C, et al. Building of the model base in ASBDARDSS[J]. Journal of Air Force Engineering University (Natural Science Edition), 2006, 7(2):1-3(in Chinese).
[27] 李建平,石全,甘茂治. 装备战场抢修理论与应用[M]. 北京:兵器工业出版社, 2000. LI J P, SHI Q, GAN M Z. Battlefield damage repair theory and application[M]. Beijing:Weapons Industry Press, 2000(in Chinese).
[28] BALL R E. The fundamental of aircraft combat survivability analysis and design[M]. Reston:AIAA, 2003.
[29] 何宇廷. 飞机安全服役包线的建立[J]. 空军工程大学学报(自然科学版), 2010, 11(2):1-5. HE Y T. Establishment of the safe-service-envelope for aircraft[J]. Journal of Air Force Engineering University (Natural Science Edition), 2010, 11(2):1-5(in Chinese).
[30] SHIN H, LEE S, KIM Y, et al. Design of a flight envelope protection system using a dynamic trim algorithm[J]. International Journal of Aeronautical and Space Sciences, 2011, 12(3):241-251.
[31] 刘小雄,邱岳恒,刘世民,等. 操纵面故障对飞行包线的影响研究[J]. 飞行力学, 2012, 30(2):128-131. LIU X X, QIU Y H, LIU S M, et al. Research for flight envelope effect of the control surface fault[J]. Flight Dynamics, 2012, 30(2):128-131(in Chinese).
[32] ASADI D, SABZEHPARVAR M, TALEBI H A. Damaged airplane flight envelope and stability evaluation[J]. Aircraft Engineering and Aerospace Technology, 2013, 85(3):186-198.
[33] ZHANG Y, de VISSER C C, CHU Q P. Aircraft damage identification and classification for database-driven online flight-envelope prediction[J]. Journal of Guidance Control and Dynamics, 2018, 41(2):449-460.
[34] NABI H N, LOMBAERTS T, ZHANG Y, et al. Effects of structural failure on the safe flight envelope of aircraft[J]. Journal of Guidance Control and Dynamics, 2018, 41(6):1257-1275.
[35] 张先锋,李向东,沈培辉,等. 终点效应学[M]. 北京:北京理工大学出版社, 2017. ZHANG X F, LI X D, SHEN P H, et al. Terminal effects[M]. Beijing:Beijing Institute of Technology Press, 2017(in Chinese).
[36] 崔晓宝,姚伟,王明志. 弹道计算格斗导弹攻击区的一种快速模拟计算法[J]. 火力与指挥控制, 2014, 39(11):133-136. CUI X B, YAO W, WANG M Z. A fast simulation algorithm of short-range missile's launch acceptance zone based on the missile's trajectory calculation[J]. Fire Control & Command Control, 2014, 39(11):133-136(in Chinese).
[37] FANG Y H, YANG R N, ZHANG Z X, et al. The calculation of missile launch envelopes based on dynamic variable structure BP neural network[C]//The 6th International Symposium on Project Management, 2018.
[38] 郭晓辉,宋笔锋,王旭. 具有电子对抗功能的飞机生存力评估方法[J]. 系统工程理论与实践, 2005, 25(6):71-75. GUO X H, SONG B F, WANG X. Evaluation of survivability to an aircraft with electronic countermeasures system[J]. System Engineering-theory & Practice, 2005, 25(6):71-75(in Chinese).
[39] 韩欣珉,尚柏林,徐浩军,等. 隐身飞机敏感性影响因素组合分析[J]. 北京航空航天大学学报, 2019, 45(6):1185-1194. HAN X M, SHANG B L, XU H J, et al. Combination analysis of susceptibility influencing factors of stealth aircraft[J]. Journal of Beijing University of Aeronautics and astronautics, 2019, 45(6):1185-1194(in Chinese).
[40] PATERSON J. Survivability benefits from the use of standoff weapons by stealth aircraft[R]. Reston:AIAA, 1999.
[41] HUANG J, WU Z, XIANG J W, et al. Assessment of aircraft combat survivability enhanced by combined radar stealth and onboard electronic attack[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2000, 17(2):150-156.
[42] 田阔,符小卫,高晓光. 威胁联网下无人机路径在线规划[J]. 西北工业大学学报, 2011, 29(3):367-373. TIAN K, FU X W, GAO X G. Exploring further UAV on-line path planning in the presence of threat netting[J]. Journal of Northwestern Polytechnical University, 2011, 29(3):367-373(in Chinese).
[43] 郭凤娟,张安,张耀中,等. 高空无人侦察机生存力仿真研究[J]. 西北工业大学学报, 2009, 27(6):827-832. GUO F J, ZHANG A, ZHANG Y Z, et al. Numerically simulating survivability of high-altitude unmanned reconnaissance aerial vehicle (URAV)[J]. Journal of Northwestern Polytechnical University, 2009, 27(6):827-832(in Chinese).
[44] 王生印,龙腾,王祝,等. 基于即时修复式稀疏A~*算法的动态航迹规划[J]. 系统工程与电子技术, 2018, 40(12):2714-2721. WANG S Y, LONG T, WANG Z, et al. Dynamic path planning using anytime repairing sparse A~* algorithm[J]. Systems Engineering and Electronics, 2018, 40(12):2714-2721(in Chinese).
[45] 李文广,孙世宇,李建增,等. 分段优化RRT的无人机动态航迹规划算法[J]. 系统工程与电子技术, 2018, 40(8):1786-1793. LI W G, SUN S Y, LI J Z, et al. UAV dynamic path planning algorithm based on segmented optimization RRT[J]. Systems Engineering and Electronics, 2018, 40(8):1786-1793(in Chinese).
[46] WANG Y Y, WEI T T, QU X J. Study of multi-objective fuzzy optimization for path planning[J]. Chinese Journal of Aeronautics, 2012, 25(1):51-56.
[47] 韩玉龙,严建钢,杨士锋,等. 威胁联网下舰载无人机对海突击航路规划[J]. 系统工程与电子技术, 2016, 39(1):101-106. HAN Y L, YAN J G, YANG S F, et al. Path planning for ship-based UAV air-to-sea attack with threat netting[J]. Systems Engineering and Electronics, 2016, 39(1):101-106(in Chinese).
[48] 朱黔,周锐. 具有持续侦查时间约束的协同航路规划[J]. 北京航空航天大学学报, 2015, 42(10):2130-2138. ZHU Q, ZHOU R. Cooperative path planning with reconnaissance duration time constraints[J]. Journal of Beijing University of Aeronautics and astronautics, 2015, 42(10):2130-2138(in Chinese).
[49] 姚武文,蔡开龙,周平,等. 飞机战斗损伤基本形式研究[J]. 新技术新工艺, 2012(4):47-49. YAO W W, CAI K L, ZHOU P, et al. Research on the basic mode of aircraft battle damage[J]. New Technology & New Process, 2012(4):47-49(in Chinese).
[50] RENDER P M, SAMAD-SUHAEB M, YANG Z Y, et al. Aerodynamics of battle-damaged finite-aspect-ratio wings[J]. Journal of Aircraft, 2009, 46(3):997-1004.
[51] PEI Y, CHEN Z W, WEI Y H, et al. Method for assessing combat survivability for aircraft with wing damage[J]. Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(5):877-886.
[52] 潘庆军,于克杰,陆阳. 浅议飞机地面实弹打击试验及战场抢修训练[J]. 四川兵工学报, 2007, 28(3):18-19. PAN Q J, YU K J, LU Y. Discuss of aircraft ball firing combat experiment and battle damage repair training[J]. Journal of Sichuan Ordnance, 2007, 28(3):18-19(in Chinese).
[53] Survivability/Vulnerability Information Analysis Center. Threat warheads & effects/battle damage assessment and repair (TWE/BDAR) training[J]. SURVIAC Bulletin, 1999, 25(2):1-7.
[54] GOODALL C. NGRAIN virtual aircraft damage and repair solution to be used by canadian forces maintaining lockheed martin F-35[EB/OL].(2010-07-16)[2020-04-08].https//www.prweb.com/releases/ngrain/1ockheedcf/prweb4267394.htm.
[55] 董保童,刘振祥. 战伤诊断与修复计算机辅助系统[J]. 飞机设计, 2007, 27(4):75-80. DONG B T, LIU Z X. Computer assisted battle damage diagnosis and repair system[J]. Aircraft Design, 2007, 27(4):75-80(in Chinese).
[56] 潘庆军,熊腊森,刘晓山. 飞机战伤抢修综合仿真系统设计与实现[J]. 兵工学报, 2007, 28(11):1401-1404. PAN Q J, XIONG L S, LIU X S. Design and development of composite aircraft battle damage repair simulation system[J]. Acta Armamentarili, 2007, 28(11):1401-1404(in Chinese).
[57] 赵盼,贾希胜,胡起伟. 战场损伤评估认知发展模型[J]. 计算机工程, 2007, 33(22):206-208. ZHAO P, JIA X S, HU Q W. Cognitive development model for battlefield damage assessment[J]. Computer Engineering, 2007, 33(22):206-208(in Chinese).
[58] IRWIN A J, RENDER P M. The influence of mid-chord battle damage on the aerodynamic characteristics of two-dimensional wings[J]. The Aeronautical Journal, 2000, 104(1033):153-161.
[59] PICKHAVER T W, RENDER P M. A technique to predict the aerodynamic effects of battle damage on an aircraft's wing[J]. The Aeronautical Journal, 2015, 119:937-960.
[60] 马建卫,严东超. 飞机电网络战伤抢修研究[J]. 航空维修与工程, 2008(4):47-49. MA J W, YAN D C. Study on aircraft electric network battle damage assessment and repair[J]. Aviation Maintenance & Engineering, 2008(4):47-49(in Chinese).
[61] 张建华,侯日立. 飞机结构战伤仿真[M]. 北京:国防工业出版社, 2006. ZHANG J H, HOU R L. Bttle damage simulation of aircraft structure[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[62] 姚武文,周平,蔡开龙. 飞机切槽形损伤分析[J]. 空军工程大学学报:自然科学版, 2008, 9(4):15-19. YAO W W, ZHOU P, CAI K L. Analysis of trough damage of airplane[J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(4):15-19(in Chinese).
[63] 陈国乐,李海兵,张启明,等. 离散杆破片对飞机壁板毁伤效应仿真[J]. 火力与指挥控制, 2013, 38(10):130-133. CHEN G L, LI H B, ZHANG Q M, et al. Study on simulation of integral panel of an aircraft damage effect caused by rod[J]. Fire Control & Command Control, 2013, 38(10):130-133(in Chinese).
[64] PAN Q J, SONG L R, HUANG Z W, et al. Research on penetration rules of LY-12cz thin sheet subjected to rod-shaped fragment[J]. Journal of Beijing Institute of Technology (English Edition), 2007, 16(2):211-216.
[65] 蔡开龙,姚武文,涂明武,等. 某涡扇发动机战伤对性能影响仿真研究[J]. 电光与控制, 2012, 19(9):72-75. CAI K L, YAO W W, TU M W, et al. Simulation of battle damage influence of turbo-fan engine on engine performance[J]. Electronics Optics & Control, 2012, 19(9):72-75(in Chinese).
[66] 焦良,李艳. 胶补飞机蒙皮补片形状优化研究[J]. 粘接, 2006, 27(4):42-44. JIAO L, LI Y. Research on optimizations of patch shape for bonding repair of aircraft skin[J]. Adhesion in China, 2006, 27(4):42-44(in Chinese).
[67] 焦良,张建华. 飞机整体壁板战伤修理研究[J]. 航空学报, 2000, 21(1):64-66. JIAO L, ZHANG J H. Research on rapid repair of battle-damaged integral panel of aircraft[J]. Aact Aeronautica et Astronautica Sinica, 2000, 21(1):64-66(in Chinese).
[68] CARNEGIE C L. An investigation into the aerodynamic effects of wing patches[D]. Ottawa:Carleton University, 1992.
[69] BLACK K J. An investigation of the effects of battle-damage repair patches on the aerodynamic performance of an airfoil[D]. Ottawa:Carleton University, 1995.
[70] 于克杰,李艳,刘守付. 某飞机机翼壁板战伤的胶接修理计算[J]. 航空计算技术, 2008, 38(4):23-25. YU K J, LI Y, LIU S F. Simulation of glued joint repair for integral panel of an aircraft[J]. Aeronautical Computing Technique, 2008, 38(4):23-25(in Chinese).
[71] 郎智明,汪海,陈秀华. 飞机双弹洞损伤整体胶接修补技术参数分析[J]. 机械科学与技术, 2008, 27(5):566-570. LANG Z M, WANG H, CHEN X H. Analysis of intergral bonded repair parameters of aircraft damage structures with double battle-holes[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(5):566-570(in Chinese).
[72] 邢素丽. 金属结构战伤的复合材料快速修复[D]. 长沙:国防科技大学, 2002. XING S L. Rapid repair of battle damaged metal structures by composites[D]. Changsha:National University of Defense Technology, 2002(in Chinese).
[73] 熊晓枫,孙秦. 飞机壁板战伤修补方法的数值分析[J]. 机械设计与制造, 2006(8):43-45. XIONG X F, SUN Q. Numerical studies on the battle damage repair technique for aircraft panels[J]. Machinery design & Manufacture, 2006(8):43-45(in Chinese).
[74] 侯日立,周平. 飞机替代材料抢修强度评估数值仿真研究[J]. 计算机仿真, 2016, 33(7):73-77. HOU R L, ZHOU P. Numerical simulation on strength evaluation of aircraft structure repaired by substitute material[J]. Computer Simulation, 2016, 33(7):73-77(in Chinese).
[75] 陈博,陈秀华,汪海. 基于MSC.Patran的飞机结构战伤快速修理程序[J]. 计算机辅助工程, 2009, 18(1):22-26. CHEN B, CHEN X H, WANG H. Rapid repair program of aircraft battle damage based on MSC.Patran[J]. Computer Aided Engineering, 2009, 18(1):22-26(in Chinese).
[76] GUO J, SONG J S, YANG M, et al. Multi-agent based resource reconfiguration framework in agile armament battlefield recovery system[C]//2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, 2008:724-727.
[77] 郭军,宋建社,曹继平,等. 战场抢修资源重组决策方法[J]. 系统工程与电子技术, 2014, 36(2):306-311. GUO J, SONG J S, CAO J P, et al. Battlefield urgent maintenance resource recombination decision making[J]. Systems Engineering and Electronics, 2014, 36(2):306-311(in Chinese).
[78] 郭军,宋建社,杨檬,等. 基于证据理论的多任务抢修重要度决策[J]. 系统工程与电子技术, 2011, 33(3):581-584. GUO J, SONG J S, YANG M, et al. Recovery importance decision making for multi-missions based on dempster-shafer theory[J]. Systems Engineering and Electronics, 2011, 33(3):581-584(in Chinese).
[79] Departiment of Defense of United States. Vulnerability assessment of aircraft:A review of the department of defense live fire test and evaluation program[R]. Washington, D.C.:Department of Defense of United States, 1993.
[80] 侯日立,张建华,周平,等. 射弹撞击下飞机的LY12铝合金结构剩余强度分析方法[J]. 航空制造技术, 2005(5):91-92. HOU R L, ZHANG J H, ZHOU P, et al. Residual strength analysis of aircraft LY12 structure impacted by projectile[J]. Aeronautical Manufacturing Technology, 2005(5):91-92(in Chinese).
[81] 吴义韬,姚卫星. 含孔层合板剩余强度估算的应力场强法工程简化模型[J]. 南京航空航天大学学报, 2016, 48(4):551-557. WU Y T, YAO W X. Simplified engineering model for predicting residual strength of notched laminates based on stress field intensity method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4):551-557(in Chinese).
[82] 薛锐,李曙林. 飞机战伤评估与修理决策支持系统研究[J]. 现代电子技术, 2003, 26(20):40-42. XUE R, LI S L. Study of Aircraft battlefield damage assessment and repair decision support system[J]. Modern Electronics Technique, 2003, 26(20):40-42(in Chinese).
[83] 李曙林,李寿安,薛锐. ABDARDSS中基于候选消除学习算法的知识推理[J]. 火力与指挥控制, 2006, 31(2):9-11. LI S L, LI S A, XUE R. Knowledge reasoning based on candidate-elimination algorithm in ABDARDSS[J]. Fire Control & Command Control, 2006, 31(2):9-11(in Chinese).
[84] 冯海星,先明乐. 军用飞机结构损伤评估专家系统设计研究[J]. 航空维修与工程, 2007(1):22-24. FENG H X, XIAN M L. Expert system of evaluating damage evaluate of airframe in military aircraft design and investigation[J]. Aviation Maintenance & Engineering, 2007(1):22-24(in Chinese).
[85] MAYER G R. Aircraft battle damage repair (ABDR) domain[R]. Tempe:Arizona State University, 2004.
[86] 孙捐利,袁保君,柳曙光. 基于任务决策的装备维修保障系统效能评估[J]. 微计算机信息, 2010, 26(22):147-149. SUN J L, YUAN B J, LIU S G. Evaluation of equipment maintenance support effectiveness based on mission decision[J]. Microcomputer Information, 2010, 26(22):147-149(in Chinese).
[87] 刘晓山,秦宇飞. 飞机战伤抢修保障效能及评估研究[J]. 航空维修与工程, 2014(2):58-61. LIU X S, QIN Y F. Research on ABDR support effectiveness and assessment[J]. Aviation Maintenance & Engineering, 2014(2):58-61(in Chinese).
[88] 李寿安,郭风,张恒喜,等. 战伤抢修对飞机战斗力作用的Markov模型[J]. 战术导弹技术, 2006(1):61-63. LI S A, GUO F, ZHANG H X, et al. Markov model of BDAR effect on combat effectiveness of aircraft[J]. Tactical Missile Technology, 2006(1):61-63(in Chinese).
[89] 侯满义,李曙林,李寿安. 基于灰色关联层次分析的飞机战伤抢修性评价[J]. 电光与控制, 2006, 13(6):68-71. HOU M Y, LI S L, LI S A. Evaluation of aircraft battle damage repair capability based on gray correlation-hierarchical analysis[J]. Electronics Optics & Control, 2006, 13(6):68-71(in Chinese).
[90] 张均勇,李武奇,周平辉,等. 基于特征的飞机战伤抢修性集对分析评价模型[J]. 东北大学学报(自然科学版), 2010, 31(5):708-712. ZHANG J Y, LI W Q, ZHOU P H, et al. SPA evaluation model based on characteristic feature of aircraft combat resilience[J]. Journal of Northeastern University (Natural Science), 2010, 31(5):708-712(in Chinese).
[91] 冯柯,钟津,严骏. 工程装备战场抢修性分析[J]. 解放军理工大学学报:自然科学版, 2004, 5(2):72-74. FENG K, ZHONG J, YAN J. Engineering equipment combat resilience[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2004, 5(2):72-74(in Chinese).
[92] 张立丰,姚卫星,邹君. 模块化飞机结构优化设计的等效多工况法[J]. 航空学报, 2015, 36(3):834-839. ZHANG L F, YAO W X, ZOU J. Equivalent multi-case optimization architecture for modular aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):834-839(in Chinese).
[93] SOSA M, EPPINGER S, ROWLES C. Identifying modular and integrative systems and their impact on design team interactions[J]. Journal of Mechanical Design, 2003, 125(2):240-252.
[94] MONTEMURRO M, VINCENTI A, VANNUCCI P. A two-level procedure for the global optimum design of composite modular structures-application to the design of an aircraft wing part 1:Theoretical formulation[J]. Journal of Optimization Theory and Applications, 2012, 155(1):1-23.
[95] MONTEMURRO M, VINCENTI A, VANNUCCI P. A two-level procedure for the global optimum design of composite modular structures-application to the design of an aircraft wing part 2:Numerical aspects and examples[J]. Journal of Optimization Theory and Applications, 2012, 155(1):24-53.
[96] SWEETMAN B. JAST moves closer to reality[J]. International Defense Review, 1995(6):33-36.
[97] PATE D J, PATTERSON M D, GERMAN B J. Optimizing families of reconfigurable aircraft for multiple missions[J]. Journal of Aircraft, 2012, 49(6):1988-2000.
[98] 吕维平,陈云翔,李坤. 基于Bayes理论的飞机可达性改进评估[J]. 电光与控制, 2009, 16(11):77-79. LYU W P, CHEN Y X, LI K. Evaluation on aircraft accessibility improvement based on bayes theory[J]. Electronics Optics & Control, 2009, 16(11):77-79(in Chinese).
[99] MA J, NI S H, XIE W J, et al. An improved strong tracking multiple-model adaptive estimation:A fast diagnosis algorithm for aircraft actuator fault[J]. Transactions of the Institute of Measurement and Control, 2016, 38(7):846-854.
[100] 马骏,倪世宏,解武杰,等. 改进的强跟踪飞机舵面快速故障诊断方法[J]. 系统工程与电子技术, 2015, 37(11):2566-2573. MA J, NI S H, XIE W J, et al. Fast fault diagnosis of improved strong tracking aircraft actuator[J]. Systems Engineering and Electronics, 2015, 37(11):2566-2573(in Chinese).
[101] 王发威,董新民,陈勇,等. 多操纵面飞机舵面损伤的快速故障诊断[J]. 航空学报, 2015, 36(7):2350-2360. WANG F W, DONG X M, CHEN Y, et al. Fast fault diagnosis of multi-effectors aircraft with control surface damage[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2350-2360(in Chinese).
[102] 贾盼盼,刘冬,王振华. 伺服回路故障检测方法研究[J]. 航空发动机, 2016, 42(4):21-24. JIA P P, LIU D, WANG Z H. Research for fault diagnosis method of servo loop[J]. Aeroengine, 2016, 42(4):21-24(in Chinese).
[103] 崔江,唐军祥,张卓然,等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报, 2018, 38(8):2458-2466. CUI J, TANG J X, ZHANG Z R, et al. Fast fault classification method research of aircraft generator rotating rectifier based on extreme learning machine[J]. Proceedings of the CSEE, 2018, 38(8):2458-2466(in Chinese).
[104] MORRIS J, WATKINS K. The development of an electrical wire chafing protective technology for aircraft[C]//Power Systems Conference, 2002.
[105] 李永浩. 关于航空电气开关标准化现状及思考[J]. 冶金与材料, 2018, 38(1):59-60. LI Y H. Current situation and consideration of standardization of aviation electrical switch[J]. Metallurgy and Materials, 2018, 38(1):59-60(in Chinese).
[106] 刘江林,杨景常. 基于"靠模"法的飞机战伤电子装备抢修仪[J]. 微计算机信息, 2008, 24(1):136-137. LIU J L, YANG J C. Aircraft battle damage electronic equipment repair instrument based on explorator method[J]. Microcomputer Information, 2008, 24(1):136-137(in Chinese).
[107] 陈素彬,李健越,潘卫星. 飞机设计中的新指标——战斗恢复力[J]. 航空科学技术, 2000(2):31-32. CHEN S B, LI J Y, PAN W X. An important index in aircraft design——combat resilience[J]. Aeronautical Science & Technology, 2000(2):31-32(in Chinese).
[108] 陈伟伦,陈春良,刘彦,等. 战场抢修任务动态调度的研究综述[J]. 现代防御技术, 2018, 46(4):139-152. CHEN W L, CHEN C L, LIU Y, et al. Review on dynamic scheduling of battlefield rush-repair tasks[J]. Modern Defense Technology, 2018, 46(4):139-152(in Chinese).
[109] 王贤菊. 空军通信导航装备维修保障系统建模与仿真研究[D]. 西安:空军工程大学, 2000. WANG X J. Modeling and simulation of maintenance support system of air force communication and navigation equipment[D]. Xi'an:Air Force Engineering University, 2000(in Chinese).
[110] 齐胜利,武昌,杨懿. 基于分层着色Petri网的装备战场抢修系统建模[J]. 系统仿真学报, 2005, 17(10):2327-2337. QI S L, WU C, YANG Y. Modeling of equipment battlefield repair system based on hierarchy colored petri net[J]. Acta Simulation System Sinica, 2005, 17(10):2327-2337(in Chinese).
[111] 刘勇,武昌,林健,等. 装备战场抢修的任意随机Petri网建模及仿真[J]. 系统仿真学报, 2007, 19(24):5651-5653. LIU Y, WU C, LIN J, et al. ASPN-based modeling and simulation of equipment battlefield repair[J]. Journal of System Simulation, 2007, 19(24):5651-5653(in Chinese).
[112] 陈希林,肖明清,王学奇. 国内外战场抢修研究的现状和发展[J]. 兵工自动化, 2006, 25(9):14-17. CHEN X L, XIAO M Q, WANG X Q. Status and development of research on BDAR both in China and Abroad[J]. Ordnance Industry Automation, 2006, 25(9):14-17(in Chinese).
[113] STONE B, ANGUS J. Virtual maintenance[J]. Aerospace, 1995(5):17-19.
[114] 郝建平,蒋科艺,王松山,等. 虚拟维修仿真理论与技术[M]. 北京:国防工业出版社, 2008. HAO J P, JIANG K Y, WANG S S, et al. Virtual maintenance theory and technologies[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[115] 夏成宝,汪定江. 航空维修表面工程学[M]. 北京:航空工业出版社, 2006. XIA C B, WANG D J. Aeronautical maintenance surface engineering[M]. Beijing:Aviation Industry Press, 2006(in Chinese).
[116] 夏丹. 用于飞机蒙皮战伤表面再制造的氧化预处理工艺[J]. 表面技术, 2006, 35(2):62-68. XIA D. Oxidizing pretreatment technology for rushing in remanufacturing damaged holes surface of aircraft envelope[J]. Surface Technology, 2006, 35(2):62-68(in Chinese).
[117] 李建霞,郭必新,张文信. 飞机机翼主梁的电刷镀工艺[J]. 材料保护, 1998, 31(11):6. LI J X, GUO B X, ZHANG W X. Brush plating technology of main beam of aircraft wing[J]. Materials Protection, 1998, 31(11):6(in Chinese).
[118] 胡芳友,回丽,易德先,等. 飞机损伤的激光抢修技术[J]. 中国激光, 2009, 36(9):2245-2250. HU F Y, HUI L, YI D X, et al. Laser repair of aircraft battle damage[J]. Chinese Journal of Lasers, 2009, 36(9):2245-2250(in Chinese).
[119] 许陆文,代永朝,苗励刚. 飞机结构战伤复合材料微波快速抢修技术[J]. 航空工程与维修, 2002(3):17-18. XU L W, DAI Y Z, MIAO L G. Technology of microwave repair for the metal structure with warlike damages by use of composite materials[J]. Aviation Engineering & Maintenance, 2002(3):17-18(in Chinese).
[120] SUN C T, KLUG J, ARENDT C. Analysis of cracked aluminum plates repaired with boned composite patches[J]. AIAA Journal, 1996, 34(2):369-374.
[121] 王新坤,王东峰,陈名华. 战伤抢修用复合材料补片胶粘剂的改性[J]. 粘接, 2005, 26(3):48-49. WANG X K, WANG D F, CHEN M H. Study on adhesive modifying used for composite patches for rapidly repairing[J]. Adhesion in China, 2005, 26(3):48-49(in Chinese).
[122] 许松,魏东,刘成武. 光固化复合材料在飞机结构抢修中的应用研究[J]. 航空维修与工程, 2006(2):30-32. XU S, WEI D, LIU C W. Study of curing-optical composite flexible in aircraft structure rush to repair[J]. Aviation Maintenance & Engineering, 2006(2):30-32(in Chinese).
[123] ROSKOWICZ M, SMAL T. The use of composite adhesives in repairing of aircraft semi-monocoque airframe[C]//15th European Conference on Composite Materials Venice, 2012.
[124] GENEST M, MARTINEZ M, MRAD N, et al. Pulsed thermography for non-destructive evaluation and damage growth monitoring of bonded repairs[J]. Composite Structures, 2009, 88(2):112-120.
[125] 田瑾,赵廷弟,刘铮. 备件供应保障系统的动力学原理及动态性研究[J]. 航空学报, 2007, 28(5):1104-1109. TIAN J, ZHAO T D, LIU Z. Dynamics principles and dynamic actions of supply support system for spare parts[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1104-1109(in Chinese).
[126] 程力,韩国柱. 基于FAHP的装备战场抢修备件品种确定模型[J]. 兵工自动化, 2006, 25(4):17-19. CHENG L, HAN G Z. Confirming model of equipment maintenance spare parts varieties in battlefield based on FAHP[J]. Ordnance Industry Automation, 2006, 25(4):17-19(in Chinese).
[127] 蔡开龙,姚武文,孙云帆,等. 飞机战伤抢修备件需求预测方法研究[J]. 电光与控制, 2010, 17(12):60-63. CAI K L, YAO W W, SUN Y F, et al. Spare part requirement prediction method for aircraft battle damage repair[J]. Electronics Optics & Control, 2010, 17(12):60-63(in Chinese).
[128] 赵培仲,魏华凯,戴京涛,等. 飞机战伤抢修的备件需求研究[J]. 四川兵工学报, 2015, 36(8):12-14. ZHAO P Z, WEI H K, DAI J T, et al. Study on spares requirement of aircraft battle damage repair[J]. Journal of Sichuan Ordnance, 2015, 36(8):12-14(in Chinese).
[129] YAO W W, CAI K L, ZHOU P, et al. Study on spare part requirement prediction model of aircraft battle damage assessment and repair based on layer analysis method[J]. Applied Mechanics and Materials, 2013, 331:626-630.
[130] 胡一繁,宋笔锋,王旭. 飞机战伤备件需求量确定方法[J]. 航空学报, 2009, 30(3):450-455. HU Y F, SONG B F, WANG X. Ascertaining of spares requirements for aircraft battle damage[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):450-455(in Chinese).
[131] MUCKSTADT J A. A model for a multi-item, multi-echelon, multi-indenture inventory system[J]. Management Science, 1973(20):472-481.
[132] 刘小辉,逢勇. 飞机战伤抢修力量配置中的运筹学研究[J]. 航空维修与工程, 2015(2):53-54. LIU X H, FENG Y. Operations research on force arrangement of aircraft battle damage repair[J]. Aviation Maintenance & Engineering, 2015(2):53-54(in Chinese).
[133] 孙振起,吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64. SUN Z Q, WU A R. Application of advanced composite in aircraft structures[J]. Materials Reports, 2015, 29(11):61-64(in Chinese).
[134] DEHM S, WURZEL D. Fast, in-situ repair of aircraft panel components[J]. Journal of Aircraft, 1989, 26(5):476-481.
[135] FALCONE A, MILLER J. Field repairable-expendable main rotor blade[J]. Journal of Applied Polymer Science, 1977, 32:247-259.
[136] CHICKEN S, WELBURN S, REED S. Repairing composite aircraft structures-RAF experience of peacetime and battle damage techniques[J]. Aeronautical Journal, 1997, 101(1006):277-285.
[137] 李曙林,李寿安,童中翔,等. 战伤抢修对飞机生存力的影响分析[J]. 兵工学报, 2005, 26(6):795-797. LI S L, LI S A, TONG Z X, et al. Effect of battle damage assessment and repair on aircraft survivability[J]. Acta Armamentarii, 2005, 26(6):795-797(in Chinese).
Outlines

/