Fluid Mechanics and Flight Mechanics

Experiment on ignition and flame of gelled hypergolic bipropellants

  • XIA Yizhi ,
  • WANG Yong ,
  • HONG Liu ,
  • YANG Weidong ,
  • CHEN Hongyu
Expand
  • Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China

Received date: 2019-07-01

  Revised date: 2019-08-01

  Online published: 2020-01-18

Supported by

Foundation of Science and Technology on Liquid Rocket Engine Laboratory(6142704020203)

Abstract

Aiming at elucidating the detailed ignition and flame characteristics of gelled hypergolic bipropellants utilizing an impinging injector, an experiment is conducted to investigate the combustion processes of gelled Monomethylhydrazine/Nitrogen Tetroxide(MMH/NTO) in a square combustion chamber with a single impinging injector. Unlike-impinging injector, including 75°, 90°, and 105° impinging angles, and 90° impinging angle triplet impinging injector, including Fuel-Oxidizer-Fuel (F-O-F) and Oxidizer-Fuel-Oxidizer(O-F-O), are used in the experiment. Schlieren technology and a high-speed camera are combined to investigate the spray and combustion processes firstly, then natural flame images are obtained by a high-speed camera directly. The ignition distance, axial flame speed, flame angle, and induction distance are obtained by image processing technology, and then the effect of injector type and jet velocity of fuel are discussed. The results show that the combustion of gelled MMH/NTO occurrs after liquid sheets breakup into ligaments, and the gas diffusion rate increases with the increasing of fuel jet velocity. The ignition distance of gelled MMH/NTO is the shortest when using the 105° unlike-impinging injector. The axial flame speed increases with the increasing of fuel jet velocity, and it's quicker when the impinging angle is 90°. During the steady combustion, the flame angle increases when the jet velocity of fuel increases, but the induction distance decreases conversely. The flame angle is the maximum when using the 90° unlike-impinging injector, and induction distance is the shortest if using the 105° unlike-impinging injector.

Cite this article

XIA Yizhi , WANG Yong , HONG Liu , YANG Weidong , CHEN Hongyu . Experiment on ignition and flame of gelled hypergolic bipropellants[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(1) : 123254 -123254 . DOI: 10.7527/S1000-6893.2019.23254

References

[1] KUNIN A, NATAN B, GREENBERG J B. Theoretical model of the transient combustion of organnic-gellant-based gel fuel droplets[J]. Journal of Propulsion and Power, 2010, 26(4):765-771.
[2] ANTAKI P. Transient processes in a rigid slurry droplet during liquid vaporization and combustion[J]. Combustion Science and Technology, 1986, 46(3):113-135.
[3] LEE A, LAW C K. Gasification and shell characteristics in slurry droplet burning[J].Combustion and Flame, 1991, 85(1-2):77-93.
[4] PALASZEWSKI B, ZAKANY J S. Metallized gelled propellants:Oxygen/RP-1/aluminum rocket heat transfer and combustion measurements:AIAA-1996-2622[R]. Reston, VA:AIAA, 1996.
[5] MORDOSKY J, ZHZANG B, KUO K, et al. Spray combustion of gelled RP-1 propellants containing nano-sized aluminum particles in rocket engine conditions:AIAA-2001-3274[R]. Reston, VA:AIAA, 2001.
[6] PALASZEWSKI B, JURNS J, BREISACHER K, et al. Metallized gelled propellants combustion experiments in a pulse detonation engine:AIAA-2004-4191[R]. Reston, VA:AIAA, 2004.
[7] RAHIMI S, HASAN D, PERETZ A. Development of laboratory-scale gel propulsion technology:AIAA-2001-3265[R]. Reston, VA:AIAA, 2001.
[8] DENNIS J, YOON C, SANTOS P, et al. Characterization of gelling systems for development of hypergolic gels[C]//4th European Conference for Aerospace Sciences, 2011.
[9] DENNIS J, POURPOINT T, SON S. Ignition of gelled monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus:AIAA-2011-5706[R]. Reston, VA:AIAA, 2011.
[10] VARMA M, JYOTI B V S. Ignition and combustion studies of heterogeneous UDMH-RFNA gel propellants[J]. International Journal of Energetic Materials & Chemical Propulsion, 2011, 10(2):259-275.
[11] CONNELL T L, RISHA G A, YETTER R A, et al. Effect of fuel type on hypergolic ignition of hydrogen peroxide with gelled hydrocarbon fuel:AIAA-2014-3470[R]. Reston, VA:AIAA, 2014.
[12] CONNELL T L, RISHA G A, YETTER R A. Ignition of hydrogen peroxide with gel hydrocarbon fuels[J]. Journal of Propulsion and Power, 2018, 34(1):1-12.
[13] KAMPEN J,ALBERIO F,CIEZKI H.Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].Aerospace Sciences and Technology, 2007, 11(1):77-83.
[14] PADWAL M B, MISHRA D P. Experimental characterization of gelled jet a1 spray flames[J]. Flow Turbulence & Combustion, 2016, 97(1):295-337.
[15] FENG S, HE B, HE H, et al. Experimental investigation of atomization and combustion of gelled propellant in high-pressure oxidant environment:AIAA-2013-3715[R]. Reston, VA:AIAA,2013.
[16] 杨大力,夏智勋,胡建新,等. 煤油凝胶单液滴燃烧特性试验[J].航空学报, 2016, 37(3):847-853. YANG D L, XIA Z X,HU J X,et al. Experimental study on ignition and combustion characteristic of single kerosene gel droplet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):847-853(in Chinese).
[17] 刘泽军,吴建军,胡小平,等.有机凝胶燃料液滴燃烧过程相分离现象[J].推进技术, 2012, 33(6):934-939. LIU Z J, WU J J, HU X P, et al. Phenomenon of phase separation in combustion process of organic gelled fuel droplets[J]. Journal of Propulsion Technology, 2012, 33(6):934-939(in Chinese).
[18] 张蒙正,徐胜利.超临界环境下煤油和UDMH单液滴燃烧现象[J].火箭推进, 2013, 39(5):1-6. ZHANG M Z, XU S L. Combustion phenomenon of kerosene and UDMH droplets in supercritical environment[J]. Journal of Rocket Propulsion, 2013, 39(5):1-6(in Chinese).
[19] 张蒙正, 李军, 陈炜, 等. 互击式喷嘴燃烧室燃烧效率实验[J]. 推进技术, 2012, 33(1):54-57. ZHANG M Z, LI J, CHEN W, et al. Experiments on combustion efficiency for impinging injector chamber[J]. Journal of Propulsion Technology, 2012, 33(1):54-57(in Chinese).
[20] 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995:2-4. ZHUANG F C. Theory, model and application of spray combustion of liquid rocket engine[M]. Changsha:National University of Defense Technology Press, 1995:2-4(in Chinese).
[21] YUAN T, CHEN C, HUANG B. Comparison of hot-fire and cold-flow observations of nitrogen tetroxide/monomethylhydrazine impinging combustion[J]. AIAA Journal, 2015, 47(10):2359-2367.
[22] 夏益志,洪流,王勇,等. 凝胶自燃推进剂撞击雾化燃烧特性试验研究[J].推进技术, 2019, 40(9):2060-2066. XIA Y Z, HONG L, WANG Y, et al. Experimental study on combustion characteristic of gelled hypergolic bipropellants utilizing impinging injector[J]. Journal of Propulsion Technology, 2019, 40(9):2060-2066(in Chinese).
Outlines

/