Electronics and Electrical Engineering and Control

Incremental nonlinear dynamic inversion control and flight test based on angular acceleration estimation

  • DANG Xiaowei ,
  • TANG Peng ,
  • SUN Hongqiang ,
  • ZHENG Chen
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. School of Transportations Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2019-09-29

  Revised date: 2020-01-10

  Online published: 2020-01-10

Abstract

The Incremental Nonlinear Dynamic Inversion (INDI) control law requires estimation of state derivative (angular acceleration) for real-time feedback and exists time delay caused by angular acceleration estimation, This paper proposes research and practical engineering solutions to the above problems. The dynamic model of the flight test Unmanned Aerial Vehicle (UAV) platform was established. The incremental nonlinear dynamic inversion control law and the controller layered design method were used to design the UAV attitude control system. Using Kalman filter, the angular acceleration estimator is designed to provide real-time feedback of angular acceleration for the control law. The control law is implemented by a model-based control system design method, and the actual flight test is performed. The test results show that the control method is achievable in engineering and show good robustness and command tracking capability.

Cite this article

DANG Xiaowei , TANG Peng , SUN Hongqiang , ZHENG Chen . Incremental nonlinear dynamic inversion control and flight test based on angular acceleration estimation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(4) : 323534 -323534 . DOI: 10.7527/S1000-6893.2019.23534

References

[1] REINER J, BALAS G J. Robust dynamic inversion for control of highly maneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(1):18-24.
[2] KIM B, CALISE A. Nonlinear flight control using neural networks[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):97-105.
[3] 朱家强,朱纪洪,郭锁凤,等.基于神经网络的鲁棒自适应逆飞行控制[J].控制理论与应用, 2005, 22(2):182-188. ZHU J Q, ZHU J H, GUO S F, et al. Neural network based robust dynamic inversion flight control[J]. Control Theory&Applications, 2005, 22(2):182-188(in Chinese).
[4] XU B, YANG C, SHI Z. Reinforcement learning output feedback NN control using deterministic learning technique[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(3):635-641.
[5] SMIT Z M, CRAIG I K. Robust flight controller design using H loop-shaping and dynamic inversion techniques:AIAA-1998-4132[R]. Reston, VA:AIAA, 1998.
[6] ITO D, WARD D T, VALASEK J. Robust dynamic inversion controller design and analysis for the X-38[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Restion,VA:AIAA, 2001:4380.
[7] 范子强,方振平.过失速机动飞机的鲁棒非线性飞行控制律设计[J].航空学报, 2002, 23(3):193-196. FAN Z Q, FANG Z P. Robust, nonlinear control design for a poststall maneuver aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3):193-196(in Chinese).
[8] BUGAJSKI D, ENNS D. A dynamic inversion based control law with application to high angle of attack research vehicle[C]//Proceeding of AIAA Guidance, Navigation, and Control Conference. Reston,VA:AIAA, 1990:826-839.
[9] BACON B J, OSTROFF A J, JOSHI S M. Reconfigurable NDI controller using inertial sensor failure detection&isolation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1373-1383.
[10] SIEBERLING S, CHU Q P, MULDER J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6):1732-1742.
[11] SIMPLICIO P, PAVEL M D, KAMPEN E J V, et al. An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2013, 21(8):1065-1077.
[12] 郑积仕,蒋新华,陈兴武.增量非线性动态逆小型无人机速度控制[J].系统工程与电子技术, 2013, 35(9):1923-1927. ZHENG J S, JIANG X H, CHEN X W. Velocity control design for the small UAV based on the incremental non-linear dynamic inversion[J]. Systems Engineering and Electronics, 2013, 35(9):1923-1927(in Chinese).
[13] KOSCHORKE J, FALKENA W, KAMPEN E J V, et al. Time delayed incremental nonlinear control[C]//AIAA Guidance, Navigation, and Control Conference. Reston,VA:AIAA, 2013.
[14] SMEUR E J, CHU Q P, CROON G C. Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(3):450-461.
[15] 周池军,朱纪洪,袁夏明,等.考虑作动器动态补偿的飞机增量滤波非线性控制[J].控制理论与应用, 2017, 34(5):594-600. ZHU C J, ZHU J H, YUAN X M, et al. Incremental filtered nonlinear control for aircraft with actuator dynamics compensation[J]. Control Theory&Applications, 2017, 34(5):594-600(in Chinese).
[16] BACON B J, OSTROFF A J. Reconfigurable flight control Using nonlinear dynamic inversion with a special accelerometer implementation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston,VA:AIAA, 2000.
[17] 陈海兵,张曙光,方振平.加速度反馈的隐式动态逆鲁棒非线性控制律设计[J].航空学报, 2009, 30(4):597-603. CHEN H B, ZHANG S G, FANG Z P. Implicit NDI robust nonlinear control design with acceleration feedback[J]. Acta Aeronautica et Astronautica, 2009, 30(4):597-603(in Chinese).
[18] 尹航,朱纪洪,周池军,等.基于Kalman预报观测器的增量动态逆控制[J].清华大学学报:自然科学版, 2014(12):1534-1538. YIN H, ZHU J H, ZHOU C J, et al. Incremental dynamic inversion control with Kalman prediction observers[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(12):1534-1538(in Chinese).
[19] RUDOLF E K. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82:35-45.
[20] 孙忠潇. Simulink仿真及代码生成技术入门到精通[M].北京:北京航空航天大学出版社, 2015:350-357. SUN Z X. Simulink simulation and code generation technique[M]. Beijing:Beihang University Press, 2015:350-357(in Chinese).
Options
Outlines

/