Special Column of New Energy Flight Vehicle Technology

Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle

  • MA Dongli ,
  • ZHANG Liang ,
  • YANG Muqing ,
  • XIA Xinglu ,
  • WANG Shaoqi
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Xi'an Modern Control Technology Research Institute, Xi'an 710065, China

Received date: 2019-08-29

  Revised date: 2020-01-04

  Online published: 2020-01-03

Abstract

Ultra-long endurance solar powered Unmanned Aerial Vehicle (UAV) has attracted wide attention due to its characteristics of high efficiency, energy saving, and unlimited cruise in principle. However, its unique design indicators and mission characteristics also impose higher requirements for key technologies. High coupling of multiple design elements means that the overall design method is different from that of conventional aircraft. Low-density and low-speed flight conditions contribute to aerodynamic characteristics of a significantly low Reynolds number. Flexible wings with large aspect ratio bring complex aeroelastic problems. The characteristics of low wing load and large wind disturbance increase the difficulty of control. Extreme flight environments and demanding mission indicators pose new challenges to energy and power systems. The high dependence on energy opens up the research direction of flight trajectory optimization. This paper summarizes the research status of key technologies of the ultra-long-endurance solar UAVs. On this basis, the difficulties in key technologies are explained, and the future trend of ultra-long endurance solar UAV is illustrated.

Cite this article

MA Dongli , ZHANG Liang , YANG Muqing , XIA Xinglu , WANG Shaoqi . Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(3) : 623418 -623418 . DOI: 10.7527/S1000-6893.2019.23418

References

[1] CESTINO E. Design of solar high altitude long endurance aircraft for multi payload & operations[J]. Aerospace Science & Technology, 2006, 10(6):541-550.
[2] FAZELPOUR F, VAFAEIPOUR M, RAHBARI O, et al. Considerable parameters of using PV cells for solar-powered aircrafts[J]. Renewable & Sustainable Energy Reviews, 2013, 22(8):81-91.
[3] RAJENDRAN P, SMITH H. Future trend analysis on the design and performance of solar-powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125(20):635-640.
[4] ALVI O R. Development of solar-powered aircraft for multipurpose application[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2010:3061.
[5] ROOF C, BARI M, OZA A, et al. The future of electric aircraft[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2013:7-10.
[6] BOUCHER R. History of solar flight[C]//20th AIAA/SAE/ASME Joint Propulsion Conference. Reston, VA:AIAA, 1984:1429.
[7] 朱宝鎏. 高空长航时无人机气动力特点分析——解析"太阳神"和"全球鹰"的气动力设计[J]. 国际航空, 2006(6):74-77. ZHU B L. Analyzing the aerodynamics design of Helios and Global Hawk[J]. International Aviation, 2006(6):74-77 (in Chinese).
[8] 祝彬,陈笑南,范桃英. 国外超高空长航时无人机发展分析[J]. 中国航天, 2013(11):28-32. ZHU B, CHEN X N, FAN T Y. Development analysis of ultra-high altitude long-endurance UAV abroad[J]. Aerospace China, 2013(11):28-32 (in Chinese).
[9] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377.
[10] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Perpetual flight with a small solar-powered UAV:Flight results, performance analysis and model validation[C]//2016 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2016:1-8.
[11] 苑轩. 我国首款大型太阳能无人机完成两万米高空飞行[J]. 中国航天, 2017(7):33. YUAN X. China's first large solar unmanned aerial vehicle completed 20,000 meters high-altitude flight[J]. Aerospace China, 2017(7):33 (in Chinese).
[12] 孙婧,胡利娟. 照亮临近空间的彩虹[J]. 中国科技财富, 2017(10):58-59. SUN J, HU L J. The Rainbow lighting near space[J]. Fortune World, 2017(10):58-59 (in Chinese).
[13] QINETI Q. Solar aircraft achieves longest unmanned flight[J]. Reinforced Plastics, 2010, 54(5):9.
[14] YOUNGBLOOD J W, TALAY T A, PEGG R J. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion[C]//20th AIAA/SAE/ASME Joint Propulsion Conference. Reston, VA:AIAA, 1984:1430.
[15] BRANDT S A, GILLIAM F T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 2012, 32(4):703-709.
[16] NOTH A. Design of solar powered airplanes for continuous flight[D]. Suisse:Ecole Polytechnique Fédérale de Lausanne, 2007:63-66.
[17] ROMEO G, CESTINO E, CORSINO G, et al. HELIPLAT:Design, aerodynamic, structural analysis of long endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6):1505-1520.
[18] ROMEO G, FRULLA G. HELIPLAT:Aerodynamic and structural analysis of HAVE solar powered platform[C]//AIAA 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles. Reston, VA:AIAA, 2002:3504.
[19] GAO X Z, HOU Z X, ZHENG G, et al. Parameters determination for concept design of solar-powered, high-altitude long-endurance UAV[J]. Aircraft Engineering & Aerospace Technology, 2013, 85(4):293-303.
[20] LEI Z, KAWAMURA H. Development of a solar-powered unmanned aerial vehicle[C]//52nd Aerospace Sciences Meeting. Reston, VA:AIAA, 2014:0539.
[21] MONTGOMERY S, MOURTOS N. Design of a 5 kilogram solar-powered unmanned airplane for perpetual solar endurance flight[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2013:3875.
[22] MALEKI M H. Conceptual design method for solar powered aircrafts[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2011:165.
[23] MORRISEY B, MCDONALD R. Multidisciplinary design optimization of an extreme aspect ratio HALE UAV[C]//9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO) and Aircraft Noise and Emissions Reduction Symposium (ANERS). Reston, VA:AIAA, 2009:6949.
[24] 昌敏,周洲,李盈盈. 基于能量平衡的太阳能飞机可持续高度分析[J]. 西北工业大学学报, 2012, 30(4):541-546. CHANG M, ZHOU Z, LI Y Y. An effective theoretical analysis of persistent flight altitudes of solar-powered airplanes[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):541-546 (in Chinese).
[25] 曹青,周洲,昌敏. 不间断飞行太阳能飞机总体参数设计研究[J]. 飞行力学, 2014, 32(2):132-136. CAO Q, ZHOU Z, CHANG M. Design and research for conceptual parameters of solar-powered non-stop airplanes[J]. Flight Dynamics, 2014, 32(2):132-136 (in Chinese).
[26] 王少奇. 超高空超长航时无人机总体设计技术研究[D]. 北京:北京航空航天大学, 2019:21-123. WANG S Q. Research on overall design technology of ultra-high altitude and ultra-long duration UAV[D]. Beijing:Beihang University, 2019:21-123 (in Chinese).
[27] 张芳,徐含乐,任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程, 2012, 12(24):6245-6251. ZHANG F, XU H L, REN W. Research of special solar-powered aircraft conceptual parameters design method[J]. Science Technology and Engineering, 2012, 12(24):6245-6251 (in Chinese).
[28] 赵辉杰,马建超. 小型太阳能无人机持久飞行技术研究[J]. 中国电子科学研究院学报, 2013, 8(4):384-387. ZHAO H J, MA J C. Research on persistent flight technology of small solar UAV[J]. Journal of CAEIT, 2013, 8(4):384-387 (in Chinese).
[29] 张秦岭,黄建,刘晓倩. 长航时太阳能无人机总体设计方法和分析[J]. 空军工程大学学报(自然科学版), 2014, 15(2):12-15. ZHANG Q L, HUANG J, LIU X Q. General design method and analysis of long endurance solar powered UAV[J]. Journal of Air Force Engineering University (Natural science edition), 2014, 15(2):12-15 (in Chinese).
[30] 张健,张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(s1):1-7. ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVS[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(s1):1-7 (in Chinese).
[31] 李赛,罗建军,谢飞. 小型长航时太阳能无人机总体设计优化方法[J]. 空军工程大学学报(自然科学版), 2018, 19(1):1-8. LI S, LUO J J, XIE F. An optimization method of overall design in small long-endurance solar powered UAV[J]. Journal of Air Force Engineering University (Natural science edition), 2018, 19(1):1-8 (in Chinese).
[32] 李锋,白鹏. 飞行器低雷诺数空气动力学[M]. 北京:中国宇航出版社, 2017:1-185. LI F, BAI P. Aircraft aerodynamics at low Reynolds number[M]. Beijing:China Aerospace Press, 2017:1-185 (in Chinese).
[33] 白鹏,崔尔杰,周伟江,等. 翼型低雷诺数层流分离泡数值研究[J]. 空气动力学学报, 2006, 24(4):416-424. BAI P, CUI E J, ZHOU W J, et al. Numerical simulation of laminar separation bubble over 2D airfoil at low Reynolds number[J]. Acta Aerodynamica Sinica, 2006, 24(4):416-424 (in Chinese).
[34] 段卓毅,王伟,耿建中,等. 高空长航时太阳能无人机高效气动力设计新挑战[J]. 空气动力学学报, 2017, 35(2):156-171. DUAN Z Y, WANG W, GENG J Z, et al. Challenges of high efficiency aerodynamics design for HALE solar powered UAV[J]. Acta Aerodynamica Sinica, 2017, 35(2):156-171 (in Chinese).
[35] 李晨飞,姜鲁华. 临近空间长航时太阳能无人机气动研究综述[J]. 世界科技研究与发展, 2018, 40(4):386-398. LI C F, JIANG L H. Review of near space long endurance solar-powered unmanned aerial vehicle in aerodynamic study[J]. World Sci-Tech R&D, 2018, 40(4):386-398 (in Chinese).
[36] LISSAMAN P B S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 2003, 15(1):223-239.
[37] SELIG M, GUGLIELMO J, BROERN A, et al. Experiments on airfoils at low Reynolds numbers[C]//34th Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 1996:62.
[38] MUELLER T J, BATIL S M. Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers[J]. AIAA Journal, 1982, 20(4):457-463.
[39] GASTER M. The structure and behavior of laminar separation bubbles:Reports and Memoranda No.3595[R]. London:Her Majesty's Stationery Office, 1969.
[40] HORTON H P. Laminar separation bubbles in two and three dimensional incompressible flow[D]. London:Queen Mary, University of London, 1968.
[41] PAULEY L L, MOIN P. The structure of two-dimensional separation[J]. Journal of Fluid Mechanics, 1990,220:397-411.
[42] LIEBECK R. Laminar separation bubbles and airfoil design at low Reynolds numbers[C]//10th Applied Aerodynamics Conference. Reston VA:AIAA, 1992:2735.
[43] 白鹏,崔尔杰,李锋,等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8 (in Chinese).
[44] 冉景洪,刘子强,白鹏. 相对厚度对低雷诺数流动中翼型动态气动力特性的影响[J]. 空气动力学学报, 2008, 26(2):178-185. RAN J H, LIU Z Q, BAI P. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamica Sinica, 2008, 26(2):178-185 (in Chinese).
[45] 冉景洪,刘子强,白鹏. 相对弯度对低雷诺数流动中翼型动态气动力特性的影响[J]. 计算力学学报, 2010, 27(1):88-94. RAN J H, LIU Z Q, BAI P. The effect of relative camber to the dynamic aerodynamic characteristics about pitching airfoils[J]. Chinese Journal of Computational Mechanics, 2010, 27(1):88-94 (in Chinese).
[46] 刘强,白鹏,李锋. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4):22-34. LIU Q, BAI P, LI F. Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):22-34 (in Chinese).
[47] 刘强,刘周,白鹏,等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究[J]. 力学学报, 2016, 48(2):269-277. LIU Q, LIU Z, BAI P, et al. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):269-277 (in Chinese).
[48] 刘沛清,马利川,屈秋林,等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524 (in Chinese).
[49] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables part II-test cases and industrial applications[J]. Journal of Turbomachinery, 2004, 128(3):423-434.
[50] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables part I-model formulation[J]. Journal of Turbomachinery, 2004, 128(3):413-422.
[51] LANGTRY R B, MENTER F R. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005:522.
[52] 王科雷,周洲,甘文彪,等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2):163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performances of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2):163-168 (in Chinese).
[53] CHEN W, BERNAL L. Design and performance of low Reynolds number airfoils for solar-powered flight[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008:316.
[54] MA D, ZHAO Y, QIAO Y, et al. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number[J]. Chinese Journal of Aeronautics, 2015, 28(4):1003-1015.
[55] 陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3):300-307. CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3):300-307 (in Chinese).
[56] YAN P L, LI L, TENG L. Investigation of various parametric geometry representation methods for airfoils[J]. Applied Mechanics & Materials, 2011, 110-116:3040-3046.
[57] ZHU J, GAO Z H, HAO Z. A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese Journal of Aeronautics, 2009, 22(3):225-229.
[58] 刘晓春,祝小平,周洲,等. 基于太阳能飞机应用的低雷诺数翼型研究[J]. 航空学报, 2017, 38(4):107-117. LIU X C, ZHU X P, ZHOU Z, et al. Research on low Reynolds number airfoils based on application of solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):107-117 (in Chinese).
[59] HOBOLD G M, AGARWAL R K. A methodology for predicting solar power incidence on airfoils and their optimization for solar-powered airplanes[J]. Proc IMechE Part G:Journal of Aerospace Engineering, 2015, 7(229):1267-1279.
[60] 阙建锋,王维军,吴宇. 利于减少配平损失的太阳能飞机构型设计[J]. 北京航空航天大学学报, 2016, 42(7):1479-1485. QUE J F, WANG W J, WU Y. Design of solar-powered aircraft configuration for reducing trim loss[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1479-1485 (in Chinese).
[61] 邓扬晨,陈华,章怡宁. 探讨飞行器翼身不同结构刚度对翼尖位移和结构重量的关系[J]. 航空计算技术, 2007, 37(4):1-3. DENG Y C, CHEN H, ZHANG Y N. Discussion on the relation between structural weight and wing tip displacement with respect to different stiffness of aircraft wing and fuselage[J]. Aeronautical Computing Technique, 2007, 37(4):1-3 (in Chinese).
[62] 李晨飞,姜鲁华. 临近空间太阳能飞翼无人机气动性能设计仿真[J]. 计算机测量与控制, 2018, 26(10):217-221. LI C F, JIANG L H. Aerodynamic characteristics design and simulation of solar-powered flying wing unmanned air vehicle of nearspace[J]. Computer Measurement & Control, 2018, 26(10):217-221 (in Chinese).
[63] SCHARPF D, MUELLER T. An experimental study of closely coupled tandem wing configurations at low Reynolds[C]//Flight Simulation Technologies Conference and Exhibit. Reston, VA:AIAA, 1989:3094.
[64] 李广佳,李锋,石文. 串置翼型数值模拟及气动特性分析[J]. 飞机设计, 2006(1):19-24. LI G J, LI F, SHI W. Numerical simulations of tandem-airfoil[J]. Aircraft Design, 2006(1):19-24 (in Chinese).
[65] 华杰,马震宇,李德坚,等. 串置翼太阳能无人机气动特性仿真与设计[J]. 弹箭与制导学报, 2016, 36(3):85-89. HUA J, MA Z Y, LI D J, et al. Simulation research on aerodynamic characteristics of tandem wing solar energy UAV and model design[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(3):85-89 (in Chinese).
[66] WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91:1-11.
[67] 马东立,包文卓,乔宇航. 利于冬季飞行的太阳能飞机构型研究[J]. 航空学报, 2014, 35(6):1581-1591. MA D L, BAO W Z, QIAO Y H. Study of solar-powered aircraft configuration beneficial to winter flight[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1581-1591 (in Chinese).
[68] WLACH S, BALMER G, HERMANN M, et al. Elaha-elastic aircraft for high altitudes[C]//23rd ESA Symposium on European Rocket and Balloon Programmes and Related Research. Noordwijk:ESA, 2017:1-5.
[69] 于哲峰,宋文斌,钱晶晶,等. 机翼几何外形的CATIA参数化建模实现方法[J]. 飞机设计, 2010, 30(3):27-30. YU Z F, SONG W B, QIAN J J, et al. On technology of parametric wing modeling based on CATIA[J]. Aircraft Design, 2010, 30(3):27-30 (in Chinese).
[70] 沈琼,余雄庆,湛岚. 运输机机翼外形和吊舱位置一体化优化方法[J]. 航空工程进展, 2010, 1(1):30-35. SHEN Q, YU X Q, ZHAN L. Integrated optimization for wing shape and nacelle locations of transports[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1):30-35 (in Chinese).
[71] 乔宇航,马东立,邓小刚. 基于升力线理论的机翼几何扭转设计方法[J]. 北京航空航天大学学报, 2013, 39(3):320-324. QIAO Y H, MA D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):320-324 (in Chinese).
[72] 符宗文. 近空间大展弦比无人机气动弹性建模与分析[D]. 长沙:国防科学技术大学, 2010:1-10. FU Z W. Aeroelastic modeling and analysis of large aspect ratio UAV in near space[D]. Changsha:National University of Defense Technology, 2010:1-10 (in Chinese).
[73] SCHMIDT D K, RANEY D L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance Control & Dynamics, 2001, 24(3):539-546.
[74] SCHMIDT D K, WASZAK M R. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 2012, 25(6):563-571.
[75] ROMANOWSKI M. Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes[C]//6th Symposium on Multidisciplinary Analysis and Optimization. Reston, VA:AIAA, 1996:3981.
[76] SILVA W A, BARTELS R E. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code[J]. Journal of Fluids & Structures, 2004, 19(6):729-745.
[77] 谢长川,吴志刚,杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1090. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1090 (in Chinese).
[78] DUNN P, DUGUNDJI J. Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings[J]. AIAA Journal, 2012, 30(1):153-162.
[79] PATIL M J, CESNIK E, HODGES D H. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1):88-94.
[80] XIE C C, LIU Y, YANG C. Theoretic analysis and experiment on aeroelasticity of very flexible wing[J]. Science China Technological Sciences, 2012, 55(9):2489-2500.
[81] 安效民,徐敏. 一种几何大变形下的非线性气动弹性求解方法[J]. 力学学报, 2011, 43(1):97-104. AN X M, XU M. An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):97-104 (in Chinese).
[82] CHEN W C, SONG L, ZHI S, et al. Analysis on gust factor of tropical cyclone strong wind over different underlying surfaces[J]. Science China Technological Sciences, 2011, 54(10):2576-2586.
[83] 李倩,刘辉志,胡非,等. 大风天气下北京城市边界层阵风结构特征[J]. 中国科学院大学学报, 2004, 21(1):40-44. LI Q, LIU H Z, HU F, et al. Characteristics of the urban boundary layer under strong wing condition in Beijing city[J]. Journal of the Graduate School of the Chinese Academy of Science, 2004, 21(1):40-44 (in Chinese).
[84] SUOMI I, GRYNING S E, FORTELIUS C, et al. Wind-gust parametrizations at heights relevant for wind energy:A study based on mast observations[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674):1298-1310.
[85] 李继广,董彦非. 基于直接力控制的无人机抗侧风着陆研究[J]. 指挥控制与仿真, 2014, (2):50-53. LI J G, DONG Y F. Counteracting sidewind control system by directforce control for UAV landing[J]. Command Control & Simulation, 2014, (2):50-53 (in Chinese).
[86] 杜丽婷. 大柔性飞机载荷综合减缓系统的设计与仿真[D]. 南京:南京航空航天大学, 2016:40-48. DU L T. Comprehensive load alleviation control and simulation for a high flexible aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:40-48 (in Chinese).
[87] 刘湘一,阎永举,文柏衡,等. 柔性机翼阵风响应与被动减缓研究[J]. 海军航空工程学院学报, 2016, (6):635-640. LIU X Y, YAN Y J, WEN B H, et al. Research on gust response and passive alleviation of flexible wing[J]. Journal of Naval Aeronautical and Astronautical University, 2016, (6):635-640 (in Chinese).
[88] BURRIS P, DEMPSTER J. Flight testing structural performance of the LAMS flight control system[C]//2nd Simulation and Support Conference. Reston, VA:AIAA, 1968:244.
[89] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2):81-86.
[90] BOTEZ R M, BOUSTANI I, VAYANI N, et al. Optimal control laws for gust alleviation[J]. Canadian Aeronautics and Space Journal, 2001, 47(1):1-6.
[91] DILLSAVER M, CESNIK C, KOLMANOVSKY I. Gust load alleviation control for very flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2011.
[92] WANG R, ZHU X, ZHOU Z. Design gust alleviation controller for highly flexible solar UAV[C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation. Piscataway, NJ:IEEE Press, 2011:930-933.
[93] MILLER G D. Wing tip-load alleviation device and method:U.S. Patent 8,333,348[P]. 2012-12-18.
[94] 叶川,李锋,付义伟,等. 临近空间长航时太阳能飞行器动导数特性及机理[J]. 宇航学报, 2015, 36(11):1219-1225. YE C, LI F, FU Y W, et al. Characteristics and mechanisms of dynamic derivatives of the near space long endurance solar powered aircraft[J]. Journal of Astronautics, 2015, 36(11):1219-1225 (in Chinese).
[95] 李锋,叶川,李广佳,等. 临近空间太阳能飞行器横航向稳定性[J]. 航空学报, 2016, 37(4):1148-1158. LI F, YE C, LI G J, et al. Lateral-directional stability of near-space solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1148-1158 (in Chinese).
[96] MEOLA D, IANNELLI L, GLIELMO L. Flight control system for small-size unmanned aerial vehicles:Design and software-in-the-loop validation[C]//21st Mediterranean Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2013:357-362.
[97] KHOT N, APPA K, AUSMAN J, et al. Deformation of a flexible wing using an actuating system for a rolling maneuver without ailerons[C]//39th AIAA/ASME/ASCE-/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, VA:AIAA, 1998:1802.
[98] KHOT N, ZWEBER J, OZ H, et al. Lift efficient composite flexible wing for rolling manuever without ailerons[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, VA:AIAA, 2000.
[99] KHOT N S, APPA K, EASTEP F E. Optimization of flexible wing without ailerons for rolling maneuver[J]. Journal of Aircraft, 2015, 37(5):892-897.
[100] KHOT N, EASTEP F, KOLONAY R. Wing twist and camber for the rolling maneuver of a flexible wing without aileron[C]//38th Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 1997.
[101] 成鑫,王和平,张怡哲. 小型无副翼电动无人机横航向特性研究[J]. 飞行力学, 2009, 27(4):74-77. CHENG X, WANG H P, ZHANG Y Z. Electric and no aileron SUAV's lateral direct dynamic characters[J]. Flight Dynamics, 2009, 27(4):74-77 (in Chinese).
[102] 赵维娜, 孙成骁, 周平方, 等. 多螺旋桨太阳能无人机航向控制分配方法[J]. 哈尔滨工程大学学报, 2015, 36(4):467-472. ZHAO W N, SUN C X, ZHOU P F. Directional control allocation of a multi-propeller solar UAV[J]. Journal of Harbin Engineering University, 2015, 36(4):467-472 (in Chinese).
[103] 徐明兴,祝小平,周洲,等. 多螺旋桨太阳能无人机推力分配方法研究[J]. 西北工业大学学报, 2013, 31(4):505-510. XU M X, ZHU X P, ZHOU Z, et al. Exploring an effective method of thrust allocation for solar-powered UAV with multiple propellers[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):505-510 (in Chinese).
[104] 肖伟,周洲,王睿,等. 分布式推进系统对太阳能无人机横航向飞行品质的影响研究[J]. 西北工业大学学报, 2012, 30(6):868-873. XIAO W, ZHOU Z, WANG R, et al. Effectively determining some selected effects of distributed propulsion system on lateral flight quality of solar UAV[J]. Journal of Northwestern Polytechnical University, 2012, 30(6):868-873 (in Chinese).
[105] 王睿,祝小平,周洲. 多螺旋桨太阳能无人机横航向操稳特性研究[J]. 飞行力学, 2012, 30(1):5-8. WANG R, ZHU X P, ZHOU Z. Research on lateral-directional flying qualities of multi-propeller solar powered UAV[J]. Flight Dynamics, 2012, 30(1):5-8 (in Chinese).
[106] GAO X Z, HOU Z X, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable & Sustainable Energy Reviews, 2015, 44:96-108.
[107] 呼文韬. 太阳能飞行器太阳能能源系统的设计与实现[D]. 天津:天津大学, 2013:1-6. HU W T. Design and implementation of power system for solar energy air vehicle[D]. Tianjin:Tianjin University, 2013:1-6 (in Chinese).
[108] 曲鹏,王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4):864-866. QU P, WANG Y. Development status and prospect of solar power systems for UAVS[J]. Power Technology, 2015(4):864-866 (in Chinese).
[109] RAJENDRAN P, SMITH H. Review of solar and battery power system development for solar- powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125:641-647.
[110] RAZYKOV T M, FEREKIDES C S, MOREL D, et al. Solar photovoltaic electricity:Current status and future prospects[J]. Solar Energy, 2011, 85(8):1580-1608.
[111] 周开宇. 高空驻留太阳能飞机光伏组件净面功率特性研究[D]. 沈阳:沈阳航空航天大学, 2016:1-8. ZHOU K Y. The research of surface characteristics of PV modules on the high-altitude solar-powered aircraft[D]. Shenyang:Shenyang Aerospace University, 2016:1-8 (in Chinese).
[112] 成珂,王忠伟,周洲. 太阳能飞机工作条件对太阳能电池性能的影响[J]. 西北工业大学学报, 2012, 30(4):535-540. CHENG K, WANG Z W, ZHOU Z. Exploring effects of solar-powered airplane operating conditions on solar cell performance[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):535-540 (in Chinese).
[113] PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 3(15):1625-1636.
[114] NASA. Helios prototype flying wing image gallery[EB/OL].(2017-08-04)[2019-08-27]. https://www.nasa.gov/centers/armstrong/multimedia/imagegallery/Helios/index.html.
[115] CHEN H C, LIN C C, HAN H V, et al. Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible Pdms film[J]. Solar Energy Materials & Solar Cells, 2012, 104(9):92-96.
[116] MATHEW X, ENRIQUEZ J P, ROMEO A, et al. CdTe/CdS solar cells on flexible substrates[J]. Solar Energy, 2004, 77(6):831-838.
[117] MORIWAKI K, NOMOTO M, YUUYA S. Monolithically integrated flexible Cu(In,Ga)Se2 solar cells and submodules using newly developed structure metal foil substrate with a dielectric layer[J]. Solar Energy Materials & Solar Cells, 2013, 112(112):106-111.
[118] WANG Z S, KAWAUCHI H, KASHIMA T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coordination Chemistry Reviews, 2004, 248(13):1381-1389.
[119] 刘勇,王传东. 空间飞行器用太阳电池研究进展[J]. 电源技术, 2015, 39(10):2325-2327. LIU Y, WANG C D. Research progress of solar cells for space aircraft[J]. Power Technology, 2015, 39(10):2325-2327 (in Chinese).
[120] ABRAMS Z R, GHARGHI M, NIV A, et al. Theoretical efficiency of 3rd generation solar cells:Comparison between carrier multiplication and down-conversion[J]. Solar Energy Materials & Solar Cells, 2012, 99(3):308-315.
[121] CISION PR Newswire.MicroLink devices powers successful stratospheric flight of airbus defence and space Zephyr S HAPS solar aircraft[EB/OL].(2018-10-17)[2019-08-27]. https://www.nasa.gov/centers/armstrong/multimedia/imagegallery/Helios/index.html.
[122] NREL. Best research-cell efficiency chart[EB/OL]. (2019-11-06)[2019-12-25]. https://www.nrel.gov/pv/ce-ll-efficiency.html.
[123] ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable & Sustainable Energy Reviews, 2016, 60:770-783.
[124] DE S, NORTHROP P W C, RAMADESIGN V, et al. Model-based simultaneous optimization of multiple design parameters forlithium-ion batteries for maximization of energy density[J]. Journal of Power Sources, 2013, 227(6):161-170.
[125] 王鹏博,郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(4):283-289. WANG P B, ZHENG J C. The present situation and expectation of lithium-ion battery[J]. Chinese Journal of Nature, 2017, 39(4):283-289 (in Chinese).
[126] ARUMUGAM M, YONGZHU F, YU S S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2012, 46(5):1125-1134.
[127] JEON B H, JIN H Y, KIM K M, et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries[J]. Journal of Power Sources, 2002, 109(1):89-97.
[128] 万文博,蒲薇华,艾德生. 锂硫电池最新研究进展[J]. 化学进展, 2013, 25(11):1830-1841. WAN W B, PU W H, AI D S. Research progress in lithium sulfur battery[J]. Progress in Chemistry, 2013, 25(11):1830-1841 (in Chinese).
[129] KOLOSNITSYN V S, KARASEVA E V. Lithium-sulfur batteries:Problems and solutions[J]. Russian Journal of Electrochemistry, 2008, 44(5):506-509.
[130] 戴月领,贺云涛,刘莉,等. 燃料电池无人机发展及关键技术分析[J]. 战术导弹技术, 2018(1):65-71. DAI Y L, HE Y T, LIU L, et al. Development of fuel cell UAV and analysis of key technology[J]. Tactical Missile Technology, 2018(1):65-71 (in Chinese).
[131] 陈哲艮. 氢能与燃料电池[J]. 中国科技成果, 2001(10):19-20. CHEN Z G, Hydrogen and fuel cell[J]. China Science and Technology Achievements, 2001(10):19-20 (in Chinese).
[132] VELEV O. Regenerative fuel cell system for an unmanned solar powered aircraft[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit. Piscataway, NJ:IEEE Press, 2000:2873.
[133] 许炜,陶占良,陈军,等. 储氢研究进展[J]. 化学进展, 2006, 18(2):200-210. XU W, TAO Z L, CHEN J, et al. Progress in hydrogen storage[J]. Progress in Chemistry, 2006, 18(2):200-210 (in Chinese).
[134] 李洪飞,于利成. 储氢材料的研究进展与应用[J]. 科技致富向导, 2011(12):96. LI H F, YU L C. Research progress and application of hydrogen storage materials[J]. Wizard Magazine Rich Technology, 2011(12):96 (in Chinese).
[135] 刘莉,杜孟尧,张晓辉,等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162 (in Chinese).
[136] CHAIEB H, SAKLY A. A novel MPPT method for photovoltaic application under partial shaded conditions[J]. Solar Energy, 2018, 159:291-299.
[137] BENNETT T, ZILOUCHIAN A, MESSENGER R. A proposed maximum power point tracking algorithm based on a new testing standard[J]. Solar Energy, 2013, 89(2):23-41.
[138] 张锦绣. 太阳能飞机能源管理的初步分析与实验[D]. 北京:清华大学, 2005:3-11. ZHANG J X. Preliminary study and experiments on energy management of solar powered aircraft[D]. Beijing:Tsinghua University, 2005:3-11 (in Chinese).
[139] 李钏,邓绍刚,赵国伟,等. 临近空间飞行器能源系统设计与研究[J]. 电源技术, 2015, 39(9):1941-1943. LI C, DENG S G, ZHAO G W, et al. Research on energy system for near space aerocraft[J]. Power Technology, 2015, 39(9):1941-1943 (in Chinese).
[140] 王伟,耿建忠,段卓毅,等. 太阳能飞机的发展现状及设计特点分析[C]//探索 创新 交流 (第7集)——第七届中国航空学会青年科技论坛文集 (上册). 北京:中国学术期刊电子出版社, 2016:533-540. WANG W, GENG J Z, DUAN Y Z, et al. Overview of solar powered aircraft and analysis of designing characteristics[C]//Exploration, Innovation and Exchange (Episode 7)-the seventh Youth Science and Technology Forum of CAAC (Volume 1). Beijing:China Academic Journal Electronic Publishing House, 2016:533-540 (in Chinese).
[141] MECROW B C, BENNETT J W, JACK A G, et al. Drive topologies for solar-powered aircraft[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1):457-464.
[142] MECROW B, BENNETT J, JACK A, et al. Very high efficiency drives for solar powered unmanned aircraft[C]//18th International Conference on Electrical Machines. Piscataway, NJ:IEEE Press, 2008:1-6.
[143] 张江鹏. 高空飞行器用高效率高功率密度永磁同步电机研究[D].哈尔滨:哈尔滨工业大学,2018:4-5. ZHANG J P. Research on high efficiency and high power density permanent magnet synchronous motor for high altitude aircraft[D]. Harbin:Harbin Institude of Technology, 2018:4-5 (in Chinese).
[144] 张成明,李立毅. 高效率高功率密度电机系统关键技术研究[C]//第三届高分辨率对地观测学术年会分会. 北京:中国学术期刊电子出版社, 2014:1-12. ZHANG C M, LI L Y. Research on the key technology of high efficiency-high power density motor system[C]//The 3rd China High Resolution Earth Observation Conference. Beijing:China Academic Journal Electronic Publishing House, 2014:1-12 (in Chinese).
[145] ZHU X, ZHENG G, HOU Z. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53.
[146] 王真,王健,熊林根,等. 临近空间环境下高功率密度电机组件设计及仿真[J]. 微特电机, 2013, 41(8):76-78. WANG Z, WANG J, XIONG L G, et al. Design and simulation of a kind of PMSM with high power density in near space[J]. Small and Special Electrical Machines, 2013, 41(8):76-78 (in Chinese).
[147] 吴洋,郭军. 基于ANSYS的临近空间飞行电机翅片换热器热力学分析[C]//北京力学会第二十三届学术年会会议论文集. 北京:中国学术期刊电子出版社, 2017:841-843. WU Y, GUO J. Thermodynamic analysis of fin heat exchanger of near space flight motor based on ANSYS[C]//Proceedings of the 23rd Annual Conference of Beijing mechanics Society. Beijing:China Academic Journal Electronic Publishing House, 2017:841-843 (in Chinese).
[148] NICKOL C L, GUYNN M D, KOHOUT L L, et al. High altitude long endurance UAV analysis of alternatives and technology requirements development:NASA/TP-2007-214861[R]. Washington,D.C.:NASA, 2007.
[149] 王森. 无人机主推进高力能密度永磁电动机关键技术研究[D]. 沈阳:沈阳工业大学, 2014:1-12. WANG S. The key technology research on main propulsion high energy density permanent magnet motor of unmanned aerial vehicle[D]. Shenyang:Shenyang University of Technology, 2014:1-12 (in Chinese).
[150] OSWALD B, KRONE M, STRABER T, et al. Design of HTS reluctance motors up to several hundred kW[J]. Physica C-superconductivity & Its Applications, 2002, 372(12):1513-1516.
[151] FOGARTY J M. Development of a 100 MVA high temperature superconducting generator[C]//IEEE Power Engineering Society General Meeting. Piscataway, NJ:IEEE Press, 2004:2065-2067.
[152] 余海阔,陈世元,王耀南. 双转子电机及其应用的分析[J]. 电机技术, 2009(5):1-4. YU H K, CHEN S Y, WANG Y N. Analysis on double rotor motor and its applications[J]. Electrical Machinery Technology, 2009(5):1-4 (in Chinese).
[153] 杜绵银,陈培,李广佳,等. 临近空间低速飞行器螺旋桨技术[J]. 飞航导弹, 2011(7):15-19. DU M Y, CHEN P, LI G J, et al. Propeller technology for low speed vehic
Outlines

/