[1] CESTINO E. Design of solar high altitude long endurance aircraft for multi payload & operations[J]. Aerospace Science & Technology, 2006, 10(6):541-550.
[2] FAZELPOUR F, VAFAEIPOUR M, RAHBARI O, et al. Considerable parameters of using PV cells for solar-powered aircrafts[J]. Renewable & Sustainable Energy Reviews, 2013, 22(8):81-91.
[3] RAJENDRAN P, SMITH H. Future trend analysis on the design and performance of solar-powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125(20):635-640.
[4] ALVI O R. Development of solar-powered aircraft for multipurpose application[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2010:3061.
[5] ROOF C, BARI M, OZA A, et al. The future of electric aircraft[C]//Proceedings of the 51st AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2013:7-10.
[6] BOUCHER R. History of solar flight[C]//20th AIAA/SAE/ASME Joint Propulsion Conference. Reston, VA:AIAA, 1984:1429.
[7] 朱宝鎏. 高空长航时无人机气动力特点分析——解析"太阳神"和"全球鹰"的气动力设计[J]. 国际航空, 2006(6):74-77. ZHU B L. Analyzing the aerodynamics design of Helios and Global Hawk[J]. International Aviation, 2006(6):74-77 (in Chinese).
[8] 祝彬,陈笑南,范桃英. 国外超高空长航时无人机发展分析[J]. 中国航天, 2013(11):28-32. ZHU B, CHEN X N, FAN T Y. Development analysis of ultra-high altitude long-endurance UAV abroad[J]. Aerospace China, 2013(11):28-32 (in Chinese).
[9] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377.
[10] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Perpetual flight with a small solar-powered UAV:Flight results, performance analysis and model validation[C]//2016 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2016:1-8.
[11] 苑轩. 我国首款大型太阳能无人机完成两万米高空飞行[J]. 中国航天, 2017(7):33. YUAN X. China's first large solar unmanned aerial vehicle completed 20,000 meters high-altitude flight[J]. Aerospace China, 2017(7):33 (in Chinese).
[12] 孙婧,胡利娟. 照亮临近空间的彩虹[J]. 中国科技财富, 2017(10):58-59. SUN J, HU L J. The Rainbow lighting near space[J]. Fortune World, 2017(10):58-59 (in Chinese).
[13] QINETI Q. Solar aircraft achieves longest unmanned flight[J]. Reinforced Plastics, 2010, 54(5):9.
[14] YOUNGBLOOD J W, TALAY T A, PEGG R J. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion[C]//20th AIAA/SAE/ASME Joint Propulsion Conference. Reston, VA:AIAA, 1984:1430.
[15] BRANDT S A, GILLIAM F T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 2012, 32(4):703-709.
[16] NOTH A. Design of solar powered airplanes for continuous flight[D]. Suisse:Ecole Polytechnique Fédérale de Lausanne, 2007:63-66.
[17] ROMEO G, CESTINO E, CORSINO G, et al. HELIPLAT:Design, aerodynamic, structural analysis of long endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6):1505-1520.
[18] ROMEO G, FRULLA G. HELIPLAT:Aerodynamic and structural analysis of HAVE solar powered platform[C]//AIAA 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles. Reston, VA:AIAA, 2002:3504.
[19] GAO X Z, HOU Z X, ZHENG G, et al. Parameters determination for concept design of solar-powered, high-altitude long-endurance UAV[J]. Aircraft Engineering & Aerospace Technology, 2013, 85(4):293-303.
[20] LEI Z, KAWAMURA H. Development of a solar-powered unmanned aerial vehicle[C]//52nd Aerospace Sciences Meeting. Reston, VA:AIAA, 2014:0539.
[21] MONTGOMERY S, MOURTOS N. Design of a 5 kilogram solar-powered unmanned airplane for perpetual solar endurance flight[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2013:3875.
[22] MALEKI M H. Conceptual design method for solar powered aircrafts[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2011:165.
[23] MORRISEY B, MCDONALD R. Multidisciplinary design optimization of an extreme aspect ratio HALE UAV[C]//9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO) and Aircraft Noise and Emissions Reduction Symposium (ANERS). Reston, VA:AIAA, 2009:6949.
[24] 昌敏,周洲,李盈盈. 基于能量平衡的太阳能飞机可持续高度分析[J]. 西北工业大学学报, 2012, 30(4):541-546. CHANG M, ZHOU Z, LI Y Y. An effective theoretical analysis of persistent flight altitudes of solar-powered airplanes[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):541-546 (in Chinese).
[25] 曹青,周洲,昌敏. 不间断飞行太阳能飞机总体参数设计研究[J]. 飞行力学, 2014, 32(2):132-136. CAO Q, ZHOU Z, CHANG M. Design and research for conceptual parameters of solar-powered non-stop airplanes[J]. Flight Dynamics, 2014, 32(2):132-136 (in Chinese).
[26] 王少奇. 超高空超长航时无人机总体设计技术研究[D]. 北京:北京航空航天大学, 2019:21-123. WANG S Q. Research on overall design technology of ultra-high altitude and ultra-long duration UAV[D]. Beijing:Beihang University, 2019:21-123 (in Chinese).
[27] 张芳,徐含乐,任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程, 2012, 12(24):6245-6251. ZHANG F, XU H L, REN W. Research of special solar-powered aircraft conceptual parameters design method[J]. Science Technology and Engineering, 2012, 12(24):6245-6251 (in Chinese).
[28] 赵辉杰,马建超. 小型太阳能无人机持久飞行技术研究[J]. 中国电子科学研究院学报, 2013, 8(4):384-387. ZHAO H J, MA J C. Research on persistent flight technology of small solar UAV[J]. Journal of CAEIT, 2013, 8(4):384-387 (in Chinese).
[29] 张秦岭,黄建,刘晓倩. 长航时太阳能无人机总体设计方法和分析[J]. 空军工程大学学报(自然科学版), 2014, 15(2):12-15. ZHANG Q L, HUANG J, LIU X Q. General design method and analysis of long endurance solar powered UAV[J]. Journal of Air Force Engineering University (Natural science edition), 2014, 15(2):12-15 (in Chinese).
[30] 张健,张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(s1):1-7. ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVS[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(s1):1-7 (in Chinese).
[31] 李赛,罗建军,谢飞. 小型长航时太阳能无人机总体设计优化方法[J]. 空军工程大学学报(自然科学版), 2018, 19(1):1-8. LI S, LUO J J, XIE F. An optimization method of overall design in small long-endurance solar powered UAV[J]. Journal of Air Force Engineering University (Natural science edition), 2018, 19(1):1-8 (in Chinese).
[32] 李锋,白鹏. 飞行器低雷诺数空气动力学[M]. 北京:中国宇航出版社, 2017:1-185. LI F, BAI P. Aircraft aerodynamics at low Reynolds number[M]. Beijing:China Aerospace Press, 2017:1-185 (in Chinese).
[33] 白鹏,崔尔杰,周伟江,等. 翼型低雷诺数层流分离泡数值研究[J]. 空气动力学学报, 2006, 24(4):416-424. BAI P, CUI E J, ZHOU W J, et al. Numerical simulation of laminar separation bubble over 2D airfoil at low Reynolds number[J]. Acta Aerodynamica Sinica, 2006, 24(4):416-424 (in Chinese).
[34] 段卓毅,王伟,耿建中,等. 高空长航时太阳能无人机高效气动力设计新挑战[J]. 空气动力学学报, 2017, 35(2):156-171. DUAN Z Y, WANG W, GENG J Z, et al. Challenges of high efficiency aerodynamics design for HALE solar powered UAV[J]. Acta Aerodynamica Sinica, 2017, 35(2):156-171 (in Chinese).
[35] 李晨飞,姜鲁华. 临近空间长航时太阳能无人机气动研究综述[J]. 世界科技研究与发展, 2018, 40(4):386-398. LI C F, JIANG L H. Review of near space long endurance solar-powered unmanned aerial vehicle in aerodynamic study[J]. World Sci-Tech R&D, 2018, 40(4):386-398 (in Chinese).
[36] LISSAMAN P B S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 2003, 15(1):223-239.
[37] SELIG M, GUGLIELMO J, BROERN A, et al. Experiments on airfoils at low Reynolds numbers[C]//34th Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 1996:62.
[38] MUELLER T J, BATIL S M. Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers[J]. AIAA Journal, 1982, 20(4):457-463.
[39] GASTER M. The structure and behavior of laminar separation bubbles:Reports and Memoranda No.3595[R]. London:Her Majesty's Stationery Office, 1969.
[40] HORTON H P. Laminar separation bubbles in two and three dimensional incompressible flow[D]. London:Queen Mary, University of London, 1968.
[41] PAULEY L L, MOIN P. The structure of two-dimensional separation[J]. Journal of Fluid Mechanics, 1990,220:397-411.
[42] LIEBECK R. Laminar separation bubbles and airfoil design at low Reynolds numbers[C]//10th Applied Aerodynamics Conference. Reston VA:AIAA, 1992:2735.
[43] 白鹏,崔尔杰,李锋,等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8 (in Chinese).
[44] 冉景洪,刘子强,白鹏. 相对厚度对低雷诺数流动中翼型动态气动力特性的影响[J]. 空气动力学学报, 2008, 26(2):178-185. RAN J H, LIU Z Q, BAI P. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamica Sinica, 2008, 26(2):178-185 (in Chinese).
[45] 冉景洪,刘子强,白鹏. 相对弯度对低雷诺数流动中翼型动态气动力特性的影响[J]. 计算力学学报, 2010, 27(1):88-94. RAN J H, LIU Z Q, BAI P. The effect of relative camber to the dynamic aerodynamic characteristics about pitching airfoils[J]. Chinese Journal of Computational Mechanics, 2010, 27(1):88-94 (in Chinese).
[46] 刘强,白鹏,李锋. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4):22-34. LIU Q, BAI P, LI F. Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):22-34 (in Chinese).
[47] 刘强,刘周,白鹏,等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究[J]. 力学学报, 2016, 48(2):269-277. LIU Q, LIU Z, BAI P, et al. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):269-277 (in Chinese).
[48] 刘沛清,马利川,屈秋林,等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524 (in Chinese).
[49] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables part II-test cases and industrial applications[J]. Journal of Turbomachinery, 2004, 128(3):423-434.
[50] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables part I-model formulation[J]. Journal of Turbomachinery, 2004, 128(3):413-422.
[51] LANGTRY R B, MENTER F R. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005:522.
[52] 王科雷,周洲,甘文彪,等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2):163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performances of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2):163-168 (in Chinese).
[53] CHEN W, BERNAL L. Design and performance of low Reynolds number airfoils for solar-powered flight[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008:316.
[54] MA D, ZHAO Y, QIAO Y, et al. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number[J]. Chinese Journal of Aeronautics, 2015, 28(4):1003-1015.
[55] 陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3):300-307. CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3):300-307 (in Chinese).
[56] YAN P L, LI L, TENG L. Investigation of various parametric geometry representation methods for airfoils[J]. Applied Mechanics & Materials, 2011, 110-116:3040-3046.
[57] ZHU J, GAO Z H, HAO Z. A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese Journal of Aeronautics, 2009, 22(3):225-229.
[58] 刘晓春,祝小平,周洲,等. 基于太阳能飞机应用的低雷诺数翼型研究[J]. 航空学报, 2017, 38(4):107-117. LIU X C, ZHU X P, ZHOU Z, et al. Research on low Reynolds number airfoils based on application of solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):107-117 (in Chinese).
[59] HOBOLD G M, AGARWAL R K. A methodology for predicting solar power incidence on airfoils and their optimization for solar-powered airplanes[J]. Proc IMechE Part G:Journal of Aerospace Engineering, 2015, 7(229):1267-1279.
[60] 阙建锋,王维军,吴宇. 利于减少配平损失的太阳能飞机构型设计[J]. 北京航空航天大学学报, 2016, 42(7):1479-1485. QUE J F, WANG W J, WU Y. Design of solar-powered aircraft configuration for reducing trim loss[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1479-1485 (in Chinese).
[61] 邓扬晨,陈华,章怡宁. 探讨飞行器翼身不同结构刚度对翼尖位移和结构重量的关系[J]. 航空计算技术, 2007, 37(4):1-3. DENG Y C, CHEN H, ZHANG Y N. Discussion on the relation between structural weight and wing tip displacement with respect to different stiffness of aircraft wing and fuselage[J]. Aeronautical Computing Technique, 2007, 37(4):1-3 (in Chinese).
[62] 李晨飞,姜鲁华. 临近空间太阳能飞翼无人机气动性能设计仿真[J]. 计算机测量与控制, 2018, 26(10):217-221. LI C F, JIANG L H. Aerodynamic characteristics design and simulation of solar-powered flying wing unmanned air vehicle of nearspace[J]. Computer Measurement & Control, 2018, 26(10):217-221 (in Chinese).
[63] SCHARPF D, MUELLER T. An experimental study of closely coupled tandem wing configurations at low Reynolds[C]//Flight Simulation Technologies Conference and Exhibit. Reston, VA:AIAA, 1989:3094.
[64] 李广佳,李锋,石文. 串置翼型数值模拟及气动特性分析[J]. 飞机设计, 2006(1):19-24. LI G J, LI F, SHI W. Numerical simulations of tandem-airfoil[J]. Aircraft Design, 2006(1):19-24 (in Chinese).
[65] 华杰,马震宇,李德坚,等. 串置翼太阳能无人机气动特性仿真与设计[J]. 弹箭与制导学报, 2016, 36(3):85-89. HUA J, MA Z Y, LI D J, et al. Simulation research on aerodynamic characteristics of tandem wing solar energy UAV and model design[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(3):85-89 (in Chinese).
[66] WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91:1-11.
[67] 马东立,包文卓,乔宇航. 利于冬季飞行的太阳能飞机构型研究[J]. 航空学报, 2014, 35(6):1581-1591. MA D L, BAO W Z, QIAO Y H. Study of solar-powered aircraft configuration beneficial to winter flight[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1581-1591 (in Chinese).
[68] WLACH S, BALMER G, HERMANN M, et al. Elaha-elastic aircraft for high altitudes[C]//23rd ESA Symposium on European Rocket and Balloon Programmes and Related Research. Noordwijk:ESA, 2017:1-5.
[69] 于哲峰,宋文斌,钱晶晶,等. 机翼几何外形的CATIA参数化建模实现方法[J]. 飞机设计, 2010, 30(3):27-30. YU Z F, SONG W B, QIAN J J, et al. On technology of parametric wing modeling based on CATIA[J]. Aircraft Design, 2010, 30(3):27-30 (in Chinese).
[70] 沈琼,余雄庆,湛岚. 运输机机翼外形和吊舱位置一体化优化方法[J]. 航空工程进展, 2010, 1(1):30-35. SHEN Q, YU X Q, ZHAN L. Integrated optimization for wing shape and nacelle locations of transports[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1):30-35 (in Chinese).
[71] 乔宇航,马东立,邓小刚. 基于升力线理论的机翼几何扭转设计方法[J]. 北京航空航天大学学报, 2013, 39(3):320-324. QIAO Y H, MA D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):320-324 (in Chinese).
[72] 符宗文. 近空间大展弦比无人机气动弹性建模与分析[D]. 长沙:国防科学技术大学, 2010:1-10. FU Z W. Aeroelastic modeling and analysis of large aspect ratio UAV in near space[D]. Changsha:National University of Defense Technology, 2010:1-10 (in Chinese).
[73] SCHMIDT D K, RANEY D L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance Control & Dynamics, 2001, 24(3):539-546.
[74] SCHMIDT D K, WASZAK M R. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 2012, 25(6):563-571.
[75] ROMANOWSKI M. Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes[C]//6th Symposium on Multidisciplinary Analysis and Optimization. Reston, VA:AIAA, 1996:3981.
[76] SILVA W A, BARTELS R E. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code[J]. Journal of Fluids & Structures, 2004, 19(6):729-745.
[77] 谢长川,吴志刚,杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1090. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1090 (in Chinese).
[78] DUNN P, DUGUNDJI J. Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings[J]. AIAA Journal, 2012, 30(1):153-162.
[79] PATIL M J, CESNIK E, HODGES D H. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1):88-94.
[80] XIE C C, LIU Y, YANG C. Theoretic analysis and experiment on aeroelasticity of very flexible wing[J]. Science China Technological Sciences, 2012, 55(9):2489-2500.
[81] 安效民,徐敏. 一种几何大变形下的非线性气动弹性求解方法[J]. 力学学报, 2011, 43(1):97-104. AN X M, XU M. An improved geometrically nonlinear algorithm and its application for nonlinear aeroelasticity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):97-104 (in Chinese).
[82] CHEN W C, SONG L, ZHI S, et al. Analysis on gust factor of tropical cyclone strong wind over different underlying surfaces[J]. Science China Technological Sciences, 2011, 54(10):2576-2586.
[83] 李倩,刘辉志,胡非,等. 大风天气下北京城市边界层阵风结构特征[J]. 中国科学院大学学报, 2004, 21(1):40-44. LI Q, LIU H Z, HU F, et al. Characteristics of the urban boundary layer under strong wing condition in Beijing city[J]. Journal of the Graduate School of the Chinese Academy of Science, 2004, 21(1):40-44 (in Chinese).
[84] SUOMI I, GRYNING S E, FORTELIUS C, et al. Wind-gust parametrizations at heights relevant for wind energy:A study based on mast observations[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674):1298-1310.
[85] 李继广,董彦非. 基于直接力控制的无人机抗侧风着陆研究[J]. 指挥控制与仿真, 2014, (2):50-53. LI J G, DONG Y F. Counteracting sidewind control system by directforce control for UAV landing[J]. Command Control & Simulation, 2014, (2):50-53 (in Chinese).
[86] 杜丽婷. 大柔性飞机载荷综合减缓系统的设计与仿真[D]. 南京:南京航空航天大学, 2016:40-48. DU L T. Comprehensive load alleviation control and simulation for a high flexible aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:40-48 (in Chinese).
[87] 刘湘一,阎永举,文柏衡,等. 柔性机翼阵风响应与被动减缓研究[J]. 海军航空工程学院学报, 2016, (6):635-640. LIU X Y, YAN Y J, WEN B H, et al. Research on gust response and passive alleviation of flexible wing[J]. Journal of Naval Aeronautical and Astronautical University, 2016, (6):635-640 (in Chinese).
[88] BURRIS P, DEMPSTER J. Flight testing structural performance of the LAMS flight control system[C]//2nd Simulation and Support Conference. Reston, VA:AIAA, 1968:244.
[89] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2):81-86.
[90] BOTEZ R M, BOUSTANI I, VAYANI N, et al. Optimal control laws for gust alleviation[J]. Canadian Aeronautics and Space Journal, 2001, 47(1):1-6.
[91] DILLSAVER M, CESNIK C, KOLMANOVSKY I. Gust load alleviation control for very flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2011.
[92] WANG R, ZHU X, ZHOU Z. Design gust alleviation controller for highly flexible solar UAV[C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation. Piscataway, NJ:IEEE Press, 2011:930-933.
[93] MILLER G D. Wing tip-load alleviation device and method:U.S. Patent 8,333,348[P]. 2012-12-18.
[94] 叶川,李锋,付义伟,等. 临近空间长航时太阳能飞行器动导数特性及机理[J]. 宇航学报, 2015, 36(11):1219-1225. YE C, LI F, FU Y W, et al. Characteristics and mechanisms of dynamic derivatives of the near space long endurance solar powered aircraft[J]. Journal of Astronautics, 2015, 36(11):1219-1225 (in Chinese).
[95] 李锋,叶川,李广佳,等. 临近空间太阳能飞行器横航向稳定性[J]. 航空学报, 2016, 37(4):1148-1158. LI F, YE C, LI G J, et al. Lateral-directional stability of near-space solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1148-1158 (in Chinese).
[96] MEOLA D, IANNELLI L, GLIELMO L. Flight control system for small-size unmanned aerial vehicles:Design and software-in-the-loop validation[C]//21st Mediterranean Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2013:357-362.
[97] KHOT N, APPA K, AUSMAN J, et al. Deformation of a flexible wing using an actuating system for a rolling maneuver without ailerons[C]//39th AIAA/ASME/ASCE-/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, VA:AIAA, 1998:1802.
[98] KHOT N, ZWEBER J, OZ H, et al. Lift efficient composite flexible wing for rolling manuever without ailerons[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, VA:AIAA, 2000.
[99] KHOT N S, APPA K, EASTEP F E. Optimization of flexible wing without ailerons for rolling maneuver[J]. Journal of Aircraft, 2015, 37(5):892-897.
[100] KHOT N, EASTEP F, KOLONAY R. Wing twist and camber for the rolling maneuver of a flexible wing without aileron[C]//38th Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 1997.
[101] 成鑫,王和平,张怡哲. 小型无副翼电动无人机横航向特性研究[J]. 飞行力学, 2009, 27(4):74-77. CHENG X, WANG H P, ZHANG Y Z. Electric and no aileron SUAV's lateral direct dynamic characters[J]. Flight Dynamics, 2009, 27(4):74-77 (in Chinese).
[102] 赵维娜, 孙成骁, 周平方, 等. 多螺旋桨太阳能无人机航向控制分配方法[J]. 哈尔滨工程大学学报, 2015, 36(4):467-472. ZHAO W N, SUN C X, ZHOU P F. Directional control allocation of a multi-propeller solar UAV[J]. Journal of Harbin Engineering University, 2015, 36(4):467-472 (in Chinese).
[103] 徐明兴,祝小平,周洲,等. 多螺旋桨太阳能无人机推力分配方法研究[J]. 西北工业大学学报, 2013, 31(4):505-510. XU M X, ZHU X P, ZHOU Z, et al. Exploring an effective method of thrust allocation for solar-powered UAV with multiple propellers[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):505-510 (in Chinese).
[104] 肖伟,周洲,王睿,等. 分布式推进系统对太阳能无人机横航向飞行品质的影响研究[J]. 西北工业大学学报, 2012, 30(6):868-873. XIAO W, ZHOU Z, WANG R, et al. Effectively determining some selected effects of distributed propulsion system on lateral flight quality of solar UAV[J]. Journal of Northwestern Polytechnical University, 2012, 30(6):868-873 (in Chinese).
[105] 王睿,祝小平,周洲. 多螺旋桨太阳能无人机横航向操稳特性研究[J]. 飞行力学, 2012, 30(1):5-8. WANG R, ZHU X P, ZHOU Z. Research on lateral-directional flying qualities of multi-propeller solar powered UAV[J]. Flight Dynamics, 2012, 30(1):5-8 (in Chinese).
[106] GAO X Z, HOU Z X, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable & Sustainable Energy Reviews, 2015, 44:96-108.
[107] 呼文韬. 太阳能飞行器太阳能能源系统的设计与实现[D]. 天津:天津大学, 2013:1-6. HU W T. Design and implementation of power system for solar energy air vehicle[D]. Tianjin:Tianjin University, 2013:1-6 (in Chinese).
[108] 曲鹏,王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4):864-866. QU P, WANG Y. Development status and prospect of solar power systems for UAVS[J]. Power Technology, 2015(4):864-866 (in Chinese).
[109] RAJENDRAN P, SMITH H. Review of solar and battery power system development for solar- powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125:641-647.
[110] RAZYKOV T M, FEREKIDES C S, MOREL D, et al. Solar photovoltaic electricity:Current status and future prospects[J]. Solar Energy, 2011, 85(8):1580-1608.
[111] 周开宇. 高空驻留太阳能飞机光伏组件净面功率特性研究[D]. 沈阳:沈阳航空航天大学, 2016:1-8. ZHOU K Y. The research of surface characteristics of PV modules on the high-altitude solar-powered aircraft[D]. Shenyang:Shenyang Aerospace University, 2016:1-8 (in Chinese).
[112] 成珂,王忠伟,周洲. 太阳能飞机工作条件对太阳能电池性能的影响[J]. 西北工业大学学报, 2012, 30(4):535-540. CHENG K, WANG Z W, ZHOU Z. Exploring effects of solar-powered airplane operating conditions on solar cell performance[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):535-540 (in Chinese).
[113] PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 3(15):1625-1636.
[114] NASA. Helios prototype flying wing image gallery[EB/OL].(2017-08-04)[2019-08-27]. https://www.nasa.gov/centers/armstrong/multimedia/imagegallery/Helios/index.html.
[115] CHEN H C, LIN C C, HAN H V, et al. Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible Pdms film[J]. Solar Energy Materials & Solar Cells, 2012, 104(9):92-96.
[116] MATHEW X, ENRIQUEZ J P, ROMEO A, et al. CdTe/CdS solar cells on flexible substrates[J]. Solar Energy, 2004, 77(6):831-838.
[117] MORIWAKI K, NOMOTO M, YUUYA S. Monolithically integrated flexible Cu(In,Ga)Se2 solar cells and submodules using newly developed structure metal foil substrate with a dielectric layer[J]. Solar Energy Materials & Solar Cells, 2013, 112(112):106-111.
[118] WANG Z S, KAWAUCHI H, KASHIMA T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coordination Chemistry Reviews, 2004, 248(13):1381-1389.
[119] 刘勇,王传东. 空间飞行器用太阳电池研究进展[J]. 电源技术, 2015, 39(10):2325-2327. LIU Y, WANG C D. Research progress of solar cells for space aircraft[J]. Power Technology, 2015, 39(10):2325-2327 (in Chinese).
[120] ABRAMS Z R, GHARGHI M, NIV A, et al. Theoretical efficiency of 3rd generation solar cells:Comparison between carrier multiplication and down-conversion[J]. Solar Energy Materials & Solar Cells, 2012, 99(3):308-315.
[121] CISION PR Newswire.MicroLink devices powers successful stratospheric flight of airbus defence and space Zephyr S HAPS solar aircraft[EB/OL].(2018-10-17)[2019-08-27]. https://www.nasa.gov/centers/armstrong/multimedia/imagegallery/Helios/index.html.
[122] NREL. Best research-cell efficiency chart[EB/OL]. (2019-11-06)[2019-12-25]. https://www.nrel.gov/pv/ce-ll-efficiency.html.
[123] ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable & Sustainable Energy Reviews, 2016, 60:770-783.
[124] DE S, NORTHROP P W C, RAMADESIGN V, et al. Model-based simultaneous optimization of multiple design parameters forlithium-ion batteries for maximization of energy density[J]. Journal of Power Sources, 2013, 227(6):161-170.
[125] 王鹏博,郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(4):283-289. WANG P B, ZHENG J C. The present situation and expectation of lithium-ion battery[J]. Chinese Journal of Nature, 2017, 39(4):283-289 (in Chinese).
[126] ARUMUGAM M, YONGZHU F, YU S S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2012, 46(5):1125-1134.
[127] JEON B H, JIN H Y, KIM K M, et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries[J]. Journal of Power Sources, 2002, 109(1):89-97.
[128] 万文博,蒲薇华,艾德生. 锂硫电池最新研究进展[J]. 化学进展, 2013, 25(11):1830-1841. WAN W B, PU W H, AI D S. Research progress in lithium sulfur battery[J]. Progress in Chemistry, 2013, 25(11):1830-1841 (in Chinese).
[129] KOLOSNITSYN V S, KARASEVA E V. Lithium-sulfur batteries:Problems and solutions[J]. Russian Journal of Electrochemistry, 2008, 44(5):506-509.
[130] 戴月领,贺云涛,刘莉,等. 燃料电池无人机发展及关键技术分析[J]. 战术导弹技术, 2018(1):65-71. DAI Y L, HE Y T, LIU L, et al. Development of fuel cell UAV and analysis of key technology[J]. Tactical Missile Technology, 2018(1):65-71 (in Chinese).
[131] 陈哲艮. 氢能与燃料电池[J]. 中国科技成果, 2001(10):19-20. CHEN Z G, Hydrogen and fuel cell[J]. China Science and Technology Achievements, 2001(10):19-20 (in Chinese).
[132] VELEV O. Regenerative fuel cell system for an unmanned solar powered aircraft[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit. Piscataway, NJ:IEEE Press, 2000:2873.
[133] 许炜,陶占良,陈军,等. 储氢研究进展[J]. 化学进展, 2006, 18(2):200-210. XU W, TAO Z L, CHEN J, et al. Progress in hydrogen storage[J]. Progress in Chemistry, 2006, 18(2):200-210 (in Chinese).
[134] 李洪飞,于利成. 储氢材料的研究进展与应用[J]. 科技致富向导, 2011(12):96. LI H F, YU L C. Research progress and application of hydrogen storage materials[J]. Wizard Magazine Rich Technology, 2011(12):96 (in Chinese).
[135] 刘莉,杜孟尧,张晓辉,等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162 (in Chinese).
[136] CHAIEB H, SAKLY A. A novel MPPT method for photovoltaic application under partial shaded conditions[J]. Solar Energy, 2018, 159:291-299.
[137] BENNETT T, ZILOUCHIAN A, MESSENGER R. A proposed maximum power point tracking algorithm based on a new testing standard[J]. Solar Energy, 2013, 89(2):23-41.
[138] 张锦绣. 太阳能飞机能源管理的初步分析与实验[D]. 北京:清华大学, 2005:3-11. ZHANG J X. Preliminary study and experiments on energy management of solar powered aircraft[D]. Beijing:Tsinghua University, 2005:3-11 (in Chinese).
[139] 李钏,邓绍刚,赵国伟,等. 临近空间飞行器能源系统设计与研究[J]. 电源技术, 2015, 39(9):1941-1943. LI C, DENG S G, ZHAO G W, et al. Research on energy system for near space aerocraft[J]. Power Technology, 2015, 39(9):1941-1943 (in Chinese).
[140] 王伟,耿建忠,段卓毅,等. 太阳能飞机的发展现状及设计特点分析[C]//探索 创新 交流 (第7集)——第七届中国航空学会青年科技论坛文集 (上册). 北京:中国学术期刊电子出版社, 2016:533-540. WANG W, GENG J Z, DUAN Y Z, et al. Overview of solar powered aircraft and analysis of designing characteristics[C]//Exploration, Innovation and Exchange (Episode 7)-the seventh Youth Science and Technology Forum of CAAC (Volume 1). Beijing:China Academic Journal Electronic Publishing House, 2016:533-540 (in Chinese).
[141] MECROW B C, BENNETT J W, JACK A G, et al. Drive topologies for solar-powered aircraft[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1):457-464.
[142] MECROW B, BENNETT J, JACK A, et al. Very high efficiency drives for solar powered unmanned aircraft[C]//18th International Conference on Electrical Machines. Piscataway, NJ:IEEE Press, 2008:1-6.
[143] 张江鹏. 高空飞行器用高效率高功率密度永磁同步电机研究[D].哈尔滨:哈尔滨工业大学,2018:4-5. ZHANG J P. Research on high efficiency and high power density permanent magnet synchronous motor for high altitude aircraft[D]. Harbin:Harbin Institude of Technology, 2018:4-5 (in Chinese).
[144] 张成明,李立毅. 高效率高功率密度电机系统关键技术研究[C]//第三届高分辨率对地观测学术年会分会. 北京:中国学术期刊电子出版社, 2014:1-12. ZHANG C M, LI L Y. Research on the key technology of high efficiency-high power density motor system[C]//The 3rd China High Resolution Earth Observation Conference. Beijing:China Academic Journal Electronic Publishing House, 2014:1-12 (in Chinese).
[145] ZHU X, ZHENG G, HOU Z. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53.
[146] 王真,王健,熊林根,等. 临近空间环境下高功率密度电机组件设计及仿真[J]. 微特电机, 2013, 41(8):76-78. WANG Z, WANG J, XIONG L G, et al. Design and simulation of a kind of PMSM with high power density in near space[J]. Small and Special Electrical Machines, 2013, 41(8):76-78 (in Chinese).
[147] 吴洋,郭军. 基于ANSYS的临近空间飞行电机翅片换热器热力学分析[C]//北京力学会第二十三届学术年会会议论文集. 北京:中国学术期刊电子出版社, 2017:841-843. WU Y, GUO J. Thermodynamic analysis of fin heat exchanger of near space flight motor based on ANSYS[C]//Proceedings of the 23rd Annual Conference of Beijing mechanics Society. Beijing:China Academic Journal Electronic Publishing House, 2017:841-843 (in Chinese).
[148] NICKOL C L, GUYNN M D, KOHOUT L L, et al. High altitude long endurance UAV analysis of alternatives and technology requirements development:NASA/TP-2007-214861[R]. Washington,D.C.:NASA, 2007.
[149] 王森. 无人机主推进高力能密度永磁电动机关键技术研究[D]. 沈阳:沈阳工业大学, 2014:1-12. WANG S. The key technology research on main propulsion high energy density permanent magnet motor of unmanned aerial vehicle[D]. Shenyang:Shenyang University of Technology, 2014:1-12 (in Chinese).
[150] OSWALD B, KRONE M, STRABER T, et al. Design of HTS reluctance motors up to several hundred kW[J]. Physica C-superconductivity & Its Applications, 2002, 372(12):1513-1516.
[151] FOGARTY J M. Development of a 100 MVA high temperature superconducting generator[C]//IEEE Power Engineering Society General Meeting. Piscataway, NJ:IEEE Press, 2004:2065-2067.
[152] 余海阔,陈世元,王耀南. 双转子电机及其应用的分析[J]. 电机技术, 2009(5):1-4. YU H K, CHEN S Y, WANG Y N. Analysis on double rotor motor and its applications[J]. Electrical Machinery Technology, 2009(5):1-4 (in Chinese).
[153] 杜绵银,陈培,李广佳,等. 临近空间低速飞行器螺旋桨技术[J]. 飞航导弹, 2011(7):15-19. DU M Y, CHEN P, LI G J, et al. Propeller technology for low speed vehic