[1] WILSON G F, CALDWELL J A, WESENSTEN N J. Operator functional state assessment for adaptive automation implementation[J].Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5797:100-104.
[2] 完颜笑如, 庄达民. 飞行员脑力负荷测量与应用[M]. 北京:科学出版社, 2014:15, 49-52. WANYAN X R, ZHUANG D M. Measurement and application of mental workload in pilots[M]. Beijing:Science Press, 2014:15, 49-52(in Chinese).
[3] RADUNTZ T. Dual frequency head maps:A new method for indexing mental workload continuously during execution of cognitive tasks[J].Frontiers in Physiology, 2017, 8:1019.
[4] 郭孜政, 潘雨帆, 潘毅润, 等. 驾驶员脑力负荷的SVM识别模型[J].哈尔滨工业大学学报, 2016, 48(3):154-158. GUO Z Z, PAN Y F, PAN Y R, et al. SVM recognition model of driver's mental workload[J].Journal of Harbin Institute of Technology, 2016, 48(3):154-158(in Chinese).
[5] AYAZ H, SHEWOKIS P A, BUNCE S, et al. Optical brain monitoring for operator training and mental workload assessment[J].NeuroImage, 2012, 59(1):36-47.
[6] WANYAN X R, ZHUANG D M, LIN Y, et al. Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation[J].International Journal of Industrial Ergonomics, 2018, 64:1-7.
[7] RYU K, MYUNG R, ERGON J. Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic[J].International Journal of Industrial Ergonomics, 2005, 35(11):991-1009.
[8] 白杰, 冯传宴, 杨坤. 飞行员脑力负荷生理测量方法研究进展[J].航天医学与医学工程, 2016, 29(2):150-156. BAI J, FENG C Y, YANG K. Research progress of physiological measurement of mental workload in pilots[J].Space Medicine & Medical Engineering, 2016, 29(2):150-156(in Chinese).
[9] 明东, 柯余峰, 何峰, 等. 基于生理信号的脑力负荷检测及自适应自动化系统研究:40年回顾与最新进展[J].电子测量与仪器学报, 2015, 29(1):1-13. MING D, KE Y F, HE F, et al. Psychophysiological measurement based studies on mental workload assessment and adaptive automation:Review of the last 40 years and the latest developments[J].Journal of Electronic Measurement and Instrumentation, 2015, 29(1):1-13(in Chinese).
[10] STEVEN L, BENJAMIN B, THORSTEN D, et al. Introduction to machine learning for brain imaging[J].NeuroImage, 2011, 56(2):387-399.
[11] GARRETT L D, ANDERSON B W, THAUT M H, et al. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 11(2):141-144.
[12] SUN Z, QIAO Y, LELIEVELDT B P F, et al. Integrating spatial-anatomical regularization and structure sparsity into SVM:Improving interpretation of Alzheimer's disease classification[J].NeuroImage, 2018, 178:445-460.
[13] SWIDERSKI B, OSOWSKI S, CICHOCKI A, et al. Single-class SVM and directed transfer function approach to the localization of the region containing epileptic focus[J].Neurocomputing, 2009, 72(7-9):1575-1583.
[14] BARJINDER K, DINESH S, PARTHA P R. EEG based emotion classification mechanism in BCI[J].Procedia Computer Science, 2018, 132:752-758.
[15] MIRANDA P B C, PRUDENCIO R B C, CARVALHO A P L F D, et al. A hybrid meta-learning architecture for multi-objective optimization of SVM parameters[J].Neurocomputing, 2014, 143:27-43.
[16] 冯传宴, 完颜笑如, 刘双, 等. 负荷条件下注意力分配策略对情境意识的影响[J].航空学报, 2019, 41(3):123307. FENG C Y, WANYAN X R, LIU S, et al. Influence of different attention allocation strategies under workloads on situation awareness[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123307(in Chinese).
[17] WILSON G F, RUSSELL C A. Operator functional state classification using multiple psychophysiological features in an air traffic control task[J].Human Factors:The Journal of the Human Factors and Ergonomics Society, 2003, 45(3):381-389.
[18] 赵仑. ERPs实验教程[M]. 南京:东南大学出版社, 2010:137-140. ZHAO L. ERPs experimental tutorial[M]. Nanjing:Southeast University Press, 2010:137-140(in Chinese).
[19] 范晓丽, 牛海燕, 周前祥, 等. 基于EEG的脑力疲劳特征研究[J].北京航空航天大学学报, 2016, 42(7):1406-1413. FAN X L, NIU H Y, ZHOU Q X, et al. Mental fatigue characteristics based on EEG analysis[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1406-1413(in Chinese).
[20] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:33-35, 121-129. ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016:33-35, 121-129(in Chinese).
[21] BURGES C J C. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[22] 奉国和. SVM分类核函数及参数选择比较[J].计算机工程与应用, 2011, 47(3):123-124. FENG G H. Parameter optimizing for support vector machines classification[J].Computer Engineering and Application, 2011, 47(3):123-124(in Chinese).
[23] BRAGA I, DO CARMO L P, BENATTI C C, et al. A note on parameter selection for support vector machines[C]//Mexican International Conference on Artificial Intelligence-Advances in Soft Computing and Its Applications. Berlin:Springer, 2013:233-244.
[24] 李颖洁, 邱意弘, 朱贻盛. 脑电信号分析方法与应用[M]. 北京:科学出版社, 2009:13-14. LI Y J, QIU Y H, ZHU Y S. Analysis method and application of EEG signal[M]. Beijing:Science Press, 2009:13-14(in Chinese).
[25] WILSON G F, RUSSELL C A. Real-time assessment of mental workload using psychophysiological measures and artificial neural networks[J].Human Factors:The Journal of the Human Factors and Ergonomics Society, 2003, 45(4):635-643.
[26] WILSON G F, RUSSELL C A. Operator functional state classification using multiple psychophysiological features in an air traffic control task[J].Human Factors:The Journal of the Human Factors and Ergonomics Society, 2003, 45(3):381-389.
[27] LIU N H, CHIANG C Y, CHU H C. Recognizing the degree of human attention using EEG signals from mobile sensors[J].Sensors, 2013, 13(8):10273-10286.
[28] YOUNGWORTH R N, GALLAGHER B B, STAMPER B L. An overview of power spectral density (PSD) calculations[C]//Proceeding of SPIE-The International Society for Optical Engineering. Bellingham:Society of Photo-optical Instrumentation Engineers, 2005:206-216.