Review

Miniature fixed-wing UAV swarms: Review and outlook

  • WANG Xiangke ,
  • LIU Zhihong ,
  • CONG Yirui ,
  • LI Jie ,
  • CHEN Hao
Expand
  • College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Received date: 2019-11-10

  Revised date: 2019-12-31

  Online published: 2019-12-26

Supported by

National Natural Science Foundation of China (61973309, 61801494, 61906209)

Abstract

Focusing on the new direction of miniature fixed-wing UAV swarms, this paper summarizes their recent developments from three aspects, i.e, the connotation of the swarm system, the existing typical programs, and the key technologies. After a systematic introduction of the connotation and application advantages of the swarm system, the existing typical programs are summarized from four perspectives: swarm collaborative mode exploration, distributed command system construction, key technology breakthroughs, and swarm verification. The current developments of technical research are reviewed in seven key points, including system architecture, communication and networking, decision-making and planning, aircraft platform, swarm flight, swarm security and swarm command and control. Finally, the future developments in the field of miniature fixed-wing UAV swarms are forecasted.

Cite this article

WANG Xiangke , LIU Zhihong , CONG Yirui , LI Jie , CHEN Hao . Miniature fixed-wing UAV swarms: Review and outlook[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(4) : 23732 -023732 . DOI: 10.7527/S1000-6893.2019.23732

References

[1] PHAM L V, DICKERSON B, SANDERS J, et al. UAV swarm attack:Protection system alternatives for destroyers[R]. Monterey, CA:Naval Postgraduate School, 2012.
[2] ROBERT O W, THOMAS P E. The unmanned combat air system carrier demonstration program:A new dawn for naval aviation?[R] Washington, D. C.:Center for Strategic and Budgetary Assessments, 2007.
[3] DUAN H B, YANG Q, DENG Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China Information Sciences, 2019, 62(1):0114201.
[4] 段海滨,申燕凯,王寅,等. 2018年无人机领域热点评述[J].科技导报, 2019, 37(3):82-90. DUAN H B, SHEN Y K, WANG Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018[J]. Science and Technology Review, 2019, 37(3):82-90(in Chinese).
[5] SPURNY V, BÁČA T, SASKA M, et al. Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles[J]. Journal of Field Robotics, 2019, 36(1):125-148.
[6] HAN J, XU Y, DI L, et al. Low-cost multi-UAV technologies for contour mapping of nuclear radiation field[J]. Journal of Intelligent and Robotic Systems, 2013, 70(1-4):401-410.
[7] MAZA I, CABALLERO F, CAPITÁN J, et al. Experimental results in multi-UAV coordination for disaster management and civil security applications[J]. Journal of Intelligent and Robotic systems, 2011, 61(1-4):563-585.
[8] TECHY L, SCHMALE I, DAVID G, et al. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles[J]. Journal of Field Robotics, 2010, 27(3):335-343.
[9] MERINO L, CABALLERO F, MARTINEZ-DE D J R, et al. A cooperative perception system for multiple UAVs:Application to automatic detection of forest fires[J]. Journal of Field Robotics, 2006, 23(3-4):165-184.
[10] KELLER J, THAKUR D, LIKHACHEV M, et al. Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1):17-24.
[11] MENG W, HE Z, SU R, et al. Decentralized multi-UAV flight autonomy for moving convoys search and track[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4):1480-1487.
[12] Defense Industry Daily Staff. USA's unmanned aircraft systems roadmap 2005-2030[EB/OL].(2005-08-29)[2019-11-14]. https://www.defenseindustrydaily.com/usas-unmanned-aircraft-systems-roadmap-20052030-01094/.
[13] Air Force Public Affairs. Flight plan outlines next 20 years for RPA[EB/OL].(2016-05-17)[2019-11-14]. https://www.af.mil/News/Article-Display/Article/774728/flight-plan-outlines-next-20-years-for-rpa/.
[14] 陈杰,辛斌.有人/无人系统自主协同的关键科学问题[J].中国科学:信息科学, 2018, 48(9):1270-1274. CHEN J, XIN B. Key scientific problems in the autonomous cooperation of manned-unmanned systems[J]. Scientia Sinica:Informationis, 2018, 48(9):1270-1274(in Chinese).
[15] 牛轶峰,肖湘江,柯冠岩.无人机集群作战概念及关键技术分析[J].国防科技, 2013, 34(5):37-43. NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science and Technology, 2013, 34(5):37-43(in Chinese).
[16] LILIEN L T, BEN O L, ANGIN P, et al. A simulation study of ad hoc networking of UAVs with opportunistic resource utilization networks[J]. Journal of Network and Computer Applications, 2014, 38:3-15.
[17] DARPA. Offensive swarm-enabled tactics (OFFSET)[EB/OL].(2016-12-07)[2019-11-14]. https://www.darpa.mil/program/offensive-swarm-enabled-tactics
[18] DARPA. Collaborative operations in denied environment (CODE)[EB/OL].(2018-11-28)[2019-11-14]. https://www.darpa.mil/program/collaborative-operations-in-denied-environment.
[19] DARPA. System of systems integration technology and experimentation (SoSITE)[EB/OL].(2016-10-27)[2019-11-14]. https://www.darpa.mil/program/system-of-systems-integration-technology-and-experimentation.
[20] DARPA. Distributed battle management (DBM)[EB/OL].(2018-02-13)[2019-11-14]. https://www.darpa.mil/program/distributed-battle-management.
[21] VALENTI M, BETHKE B, HOW J P, et al. Embedding health management into mission tasking for UAV teams[C]//American Control Conference. Piscataway,NJ:IEEE Press, 2007:5777-5783.
[22] KUSHLEYEV A, MELLINGER D, POWERS C, et al. Towards a swarm of agile micro quadrotors[J]. Autonomous Robots, 2013, 35(4):287-300.
[23] HIESLMAIR M.Drone 100:A world record featuring 100 points[EB/OL].(2016-01-12)[2019-09-14].https://ars.electronica.art/feature/en/drone100/.
[24] INTEL. Experience a record breaking performance[EB/OL].(2019-07-18)[2019-09-14]. https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html.
[25] EHANG. Ehang drone formation flight[EB/OL](2017-02-11)[2019-11-14]. http://www.ehang.com/formation/.
[26] HIGH GREAT. 30 cities-lighting up China[EB/OL].(2019-07-24)[2019-11-14]. http://droneshow.hg-fly.com/en/.
[27] VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20):3536.
[28] MONDADA F, BONANI M, RAEMY X, et al. The e-puck, a robot designed for education in engineering[C]//Conference on Autonomous Robot Systems and Competitions,2009:59-65.
[29] FRANCESCA G, BRAMBILLA M, BRUTSCHY A, et al. AutoMoDe:A novel approach to the automatic design of control software for robot swarms[J]. Swarm Intelligence, 2014, 8(2):89-112.
[30] KERNBACH S, THENIUS R, KERNBACH O, et al. Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system[J]. Adaptive Behavior,2009, 17(3):237-259.
[31] RUBENSTEIN M, AHLER C, HOFF N, et al. Kilobot:A low cost robot with scalable operations designed for collective behaviors[J]. Robotics and Autonomous Systems, 2014, 62(7):966-975.
[32] RUBENSTEIN M, CORNEJO A, NAGPAL R. Programmable self-assembly in a thousand-robot swarm[J]. Science, 2014, 345(6198):795-799.
[33] WERFEL J, PETERSEN K, NAGPAL R. Designing collective behavior in a termite-inspired robot construction team[J]. Science, 2014, 343(6172):754-758.
[34] GARATTONI L, BIRATTARI M. Autonomous task sequencing in a robot swarm[J]. Science Robotics, 2018, 3(20):0430.
[35] LI S G, BATRA R, BROWN D, et al. Particle robotics based on statistical mechanics of loosely coupled components[J]. Nature, 2019, 567(7748):361-365.
[36] ONR. LOCUST:Autonomous, swarming UAVs fly into the future[EB/OL].(2015-04-14)[2019-09-14]. https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-ONR.
[37] MEHTA A. Pentagon launches 103 unit drone swarm[EB/OL].(2017-01-10)[2019-09-14]. https://www.defensenews.com/air/2017/01/10/pentagon-launches-103-unit-drone-swarm/.
[38] The Maritime Executive. Nasa, U.S. navy team up to test microdrones[EB/OL].(2019-04-22)[2019-09-14]. https://www.maritime-executive.com/article/nasa-u-s-navy-team-up-to-test-microdrones.
[39] DARPA. Gremlins on track for demonstration flights in 2019[EB/OL].(2018-05-09)[2019-09-14]. https://www.darpa.mil/news-events/2018-05-09.
[40] India TV News Desk. Development of swarms of drones underway to take out airstrikes like Balakot[EB/OL].(2019-07-12)[2019-11-14]. https://www.indiatvnews.com/news/india-swarms-of-drones-balakot-airstrike-534581.
[41] Defense Systems&Equipment International (DSEI). STM introduces mini-UAV systems to the world[EB/OL].(2019-09-10)[2019-11-14]. https://armadainternational.com/2019/09/stm-introduces-mini-uav-systems-to-the-world/.
[42] WANG X K, SHEN L C, LIU Z H, et al. Coordinated flight control of miniature fixed-wing UAV swarms:Methods and experiments[J]. Science China Information Sciences, 2019, 62(11):212204
[43] 段海滨,邱华鑫.基于群体智能的无人机集群自主控制[M].北京:科学出版社, 2018. DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligent[M]. Beijing:Science Press, 2018(in Chinese).
[44] BOYD J. A discourse on winning and losing[M]. Alabama:Air University Press, 2018.
[45] 黄琳.为什么做,做什么和发展战略——控制科学学科发展战略研讨会约稿前言[J].自动化学报, 2013, 39(2):97-100. HUANG L. Future development in control science:Why, what and strategy[J]. Acta Automatica Sinica, 2013, 39(2):97-100(in Chinese).
[46] SANCHEZ-LOPEZ J, PESTANA J, PUENTE P, et al. A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems:Simulation and experimentation[J]. Journal of Intelligent&Robotic Systems, 2015, 84, 1-19.
[47] SANCHEZ-LOPEZ J, FERNANDEZ RAS, BAVLE H, et al. Aerostack:An architecture and open-source software framework for aerial robotics[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2016:332-341.
[48] GRABE B, RIEDEL M, BULTHOFF H, et al. The telekyb framework for a modular and extendible ROS-based quadrotor control[C]//European Conference on Mobile Robots. Piscataway, NJ:IEEE Press, 2013:19-25.
[49] BOSKOVIC J, KNOEBEL N, MOSHTAGH N J. et al. Collaborative mission planning&autonomous control technology (compact) system employing swarms of UAVs[C]//AIAA Guidance, Navigation, and Control Conference. Reston,VA:AIAA, 2009:1-24.
[50] CHUNG T, CLEMENT M, DAY M, et al. Jones, live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2016:1255-1262.
[51] CAMPION M, RANGANATHAN P, FARUQUE S. UAV swarm communication and control architectures:A review[J]. Journal of Unmanned Vehicle Systems, 2019, 7(2):93-106.
[52] BEKMEZCI I, SAHINGOZ O, TEMEL S. Flying ad-hoc networks (FANETs):A survey[J]. Ad Hoc Networks, 2013, 11(3):1254-70.
[53] SIVAKUMAR A, TAN C. UAV swarm coordination using cooperative control for establishing a wireless communications backbone[C]//International Conference on Autonomous Agents and Multiagent Systems, 2010:1157-1164.
[54] 卓琨,张衡附,郑博,等.无人机自组网研究进展综述[J].电信科学, 2015, 31(4):134-144. ZHUO K, ZHANG H F, ZHENG B, et al. Progress of UAV Ad Hoc network:A survey[J]. Te1ecommunications Science, 2015, 31(4):134-144(in Chinese).
[55] SAHINGOZ O. Networking models in flying Ad-hoc networks (FANETs):Concepts and challenges[J]. Journal of Intelligent and Robotic systems, 2014, 74(1-2):513-527.
[56] GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys&Tutorials, 2015, 18(2):1123-1152.
[57] XIE J, WAN Y, KIM J, et al. A survey and analysis of mobility models for airborne networks[J]. IEEE Communications Surveys&Tutorials, 2013, 16(3):1221-1238.
[58] HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications:A communications viewpoint[J]. IEEE Communications Surveys&Tutorials, 2016, 18(4):2624-2661.
[59] ZHOU Y, LI J, LAMONT L, et al. Modeling of packet dropout for UAV wireless communications[C]//International Conference on Computing, Networking and Communications, 2012:677-682.
[60] 宗群,王丹丹,邵士凯,等.多无人机协同编队飞行控制研究现状及发展[J].哈尔滨工业大学学报, 2017, 49(3):1-14. ZONG Q, WANG D D, SHAO S K, et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49(3):1-14(in Chinese).
[61] WANG X K, ZENG Z W, CONG Y R. Multi-agent distributed coordination control:Developments and directions via graph viewpoint[J]. Neurocomputing, 2016, 199:204-218.
[62] CHOI H, BRUNET L, HOW J. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics, 2009, 25(4):912-926.
[63] GANCET J, HATTENBERGER G, ALAMI R, et al. Task planning and control for a multi-UAV system:architecture and algorithms[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2005:1017-1022.
[64] CAPITAN J, MERINO L, OLLERO A. Decentralized cooperation of multiple UAS for multi-target surveillance under uncertainties[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2014:1196-1202.
[65] CAPITAN J, SPAAN M, MERINO L, et al. Decentralized multi-robot cooperation with auctioned POMDPs[J]. The International Journal of Robotics Research, 2013, 32(6):650-671.
[66] LANILLOS P, GAN S, BESADA-PORTAS E, et al. Multi-UAV target search using decentralized gradient-based negotiation with expected observation[J]. Information Sciences, 2014, 282:92-110.
[67] AKSELROD D, SINHA A, KIRUBARAJAN T. Hierarchical markov decision processes based distributed data fusion and collaborative sensor management for multitarget multisensor tracking applications[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ:IEEE Press, 2007:157-164.
[68] BERNARD M, KONDAK K, MAZA I, et al. Autonomous transportation and deployment with aerial robots for search and rescue missions[J]. Journal of Field Robotics, 2011, 28(6):914-931.
[69] BEARD R, MCLAIN T. Small unmanned aircraft:The Practice[M]. Princeton, NJ:Princeton University Press, 2012.
[70] CHAO H, CAO Y, CHEN Y. Autopilots for small unmanned aerial vehicles:A survey[J]. International Journal of Control, Automation and Systems, 2010, 8(1):36-44.
[71] GOERZEN C, KONG Z, METTLER B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1-4):65-100.
[72] JOHNSON E, KANNAN S. Adaptive trajectory control for autonomous helicopters[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):524-538.
[73] HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[74] AMBROSINO G, ARIOLA M, CINIGLIO U, et al. Path generation and tracking in 3-D for UAVs[J]. IEEE Transactions on Control Systems Technology, 2009,17(4):980-988.
[75] XARGAY E, DOBROKHODOV V, KAMINER I, et al. Time-critical cooperative control of multiple autonomous vehicles[J]. IEEE Control Systems Magazine, 2012, 32(5):49-73.
[76] RHEE R, PARK S. A tight path following algorithm of an UAS based on PID control[C]//SICE Annual Conference, 2010:1270-1273
[77] KUKRETI C, KUMAR M. Genetically tuned LQR based path following for UAVs under wind disturbance[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2016:267-274.
[78] RATNOO A, SUJIT P, KOTHARI M. Optimal path following for high wind flights[C]//Proceedings of IFAC World Congress, 2011:12985-12990.
[79] NELSON D, BARBER D, MCLAIN T, et al. Vector-field path following for miniature air vehicles[J]. IEEE Transactions on Robotics, 2007, 23(3):519-529.
[80] WANG Y J, WANG X K, ZHAO S L, et al. Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds[J]. Journal of Systems Science and Complexity, 2018, 31(1):302-324.
[81] ZHAO S L, WANG X K, LIN Z Y, et al. Integrating vector field approach and input-to-state stability for curved path following for unmanned aerial vehicles[J]. IEEE Transactions on Systems Man and Cybernetics Systems, 2018, 99:1-8.
[82] LEKKAS A, FOSSEN T. Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6):2287-2301.
[83] COELHO P, NUNES U. Path-following control of mobile robots in presence of uncertainties[J]. IEEE Transactions on Robotics, 2005, 21(2):252-261.
[84] FAULWASSER T, FINDEISEN R. Nonlinear model predictive control for constrained output path following[J]. IEEE Transactions on Automatic Control, 2016, 61(4):1026-1039.
[85] MORRO A, SGORBISSA A, ZACCARIA R. Path following for unicycle robots with an arbitrary path curvature[J]. IEEE Transactions on Robotics, 2011, 27(5):1016-1023.
[86] KAMINER I, XARGAY E, HOVAKIMYAN N, et al. Path following for small unmanned aerial vehicles using L1 adaptive augmentation of commercial autopilots[J]. Journal of Guidance Control and Dynamics, 2010, 33(2):550-564.
[87] SUJIT P, SARIPALLI S, SOUSA J. Unmanned aerial vehicle path following:A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles[J]. IEEE Control Systems Magazine, 2014, 34(1):42-59.
[88] ZHU B, XIE L, HAN D, et al. A survey on recent progress in control of swarm systems[J]. Science China Information Sciences, 2017, 60(7):070201.
[89] CHUNG S, PARANJAPE A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4):837-855.
[90] GU Y, SEANOR B, CAMPA G, et al. Design and flight testing evaluation of formation control laws[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6):1105-1112.
[91] CAMPA G, GU Y, SEANOR B, et al. Design and flight-testing of non-linear formation control laws[J]. Control Engineering Practice, 2007, 15(9):1077-1092.
[92] WILSON D, GOKTOGAN A, SUKKARIEH S. Vision-aided guidance and navigation for close formation flight[J]. Journal of Field Robotics, 2016, 33(5):661-686.
[93] NAGY M, AKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290):890.
[94] LUO Q N, DUAN H B. Distributed UAV flocking control based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology, 2017, 70:257-264.
[95] KOWNACKI C, AMBROZIAK L. Local and asymmetrical potential field approach to leader tracking problem in rigid formations of fixed-wing UAVs[J]. Aerospace Science and Technology, 2017, 68:465-474.
[96] NAIR R, KARKI H, SHUKLA A, et al. Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control[J]. IEEE Systems Journal, 2019, 13(1):1006-1017.
[97] SUN Z, DAI L, XIA Y, et al. Event-based model predictive tracking control of nonholonomic systems with coupled input constraint and bounded disturbances[J]. IEEE Transactions on Automatic Control, 2017, 63(2):608-615.
[98] FAHIMI F. Sliding-mode formation control for underactuated surface vessels[J]. IEEE Transactions on Robotics, 2007, 23(3):617-622.
[99] DEFOORT M, FLOQUET T, KOKOSY A, et al. Sliding-mode formation control for cooperative autonomous mobile robots[J]. IEEE Transactions on Industrial Electronics, 2008, 55(11):3944-3953.
[100] WATANABE Y, AMIEZ A, CHAVENT P. Fully-autonomous coordinated flight of multiple UAVs using decentralized virtual leader approach[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2013:5736-5741.
[101] LU X, LU R, CHEN S, et al. Finite-time distributed tracking control for multi-agent systems with a virtual leader[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(2):352-362.
[102] YU X, LIU L. Distributed formation control of nonholonomic vehicles subject to velocity constraints[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1289-1298.
[103] LEWIS M, TAN K. High precision formation control of mobile robots using virtual structures[J]. Autonomous robots, 1997, 4(4):387-403.
[104] LI N, LIU H. Formation UAV flight control using virtual structure and motion synchronization[C]//American Control Conference, 2008:1782-1787.
[105] LOW C. A dynamic virtual structure formation control for fixed-wing UAVs[C]//IEEE International Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2011:627-632.
[106] REZAEE H, ABDOLLAHI F. Motion synchronization in unmanned aircrafts formation control with communication delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(3):744-756.
[107] LI Q,JIANG Z. Pattern preserving path following of unicycle teams with communication delays[J]. Robotics and Autonomous Systems, 2012, 60(9):1149-1164.
[108] CONDE R, ALEJO D, COBANO J, et al. Conflict detection and resolution method for cooperating unmanned aerial vehicles[J]. Journal of Intelligent&Robotic Systems, 2012, 65(1-4):495-505.
[109] ZHANG X, DU Y, GU B, et al. Survey of safety management approaches to unmanned aerial vehicles and enabling technologies[J]. Journal of Communications and Information Networks, 2018, 3(4):1-14.
[110] MAHJRI I, DHRAIEF A, BELGHITH A. A review on collision avoidance systems for unmanned aerial vehicles[C]//International Workshop on Communication Technologies for Vehicles, 2015:203-214.
[111] JENIE Y I, VAN KAMPEN E J, ELLERBROEK J, et al. Taxonomy of conflict detection and resolution approaches for unmanned aerial vehicle in an integrated airspace[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(3):558-567.
[112] DADKHAH N, METTLER B. Survey of motion planning literature in the presence of uncertainty:Considerations for UAV guidance[J]. Journal of Intelligent&Robotic Systems, 2012, 65(1-4):233-246.
[113] DAI L, CAO Q, XIA Y, et al. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance[J]. Journal of the Franklin Institute, 2017, 354(4):2068-2085.
[114] ALONSO-MORA J, BEARDSLEY P, SIEGWART R. Cooperative collision avoidance for nonholonomic robots[J]. IEEE Transactions on Robotics, 2018, 34(2):404-420.
[115] HOY M, MATVEEV A S, SAVKIN A V. Algorithms for collision-free navigation of mobile robots in complex cluttered environments:A survey[J]. Robotica, 2015, 33(3):463-497.
[116] HENDRICKX J M, FIDAN B, YU C, et al. Formation teorganization by primitive operations on firected hraphs[J]. IEEE Transactions on Automatic Control, 2008, 53(4):968-979.
[117] WANG X K, WANG X, ZHANG D B, et al. A liquid sphere-inspired physicomimetics approach for multiagent formation control[J]. International Journal of Robust and Nonlinear Control, 2018, 28(15):4565-4583.
[118] 王强.面向任务的多智能体系统抗毁性拓扑结构构建与群集控制[D].北京:北京理工大学,2014. WANG Q. Task-oriented gault-tolerant topology and glocking vontrol for multi-agent dystems[D]. Beijing:Beijing Institute of Technology, 2014(in Chinese).
[119] YANG L. Building K-connected neighborhood graphs for isometric data embedding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5):827-831.
[120] 金仁成,谢林达,魏巍,等.一种用于仿生导航无人机航姿求解的混合滤波方法[J].导航定位与授时,2019,6(5):74-81. JIN R C, XIE L D, WEI W, et.al. A hybrid filter method for attitude determination of UAV in bionic navigation[J]. Navigation Positioning and Timing, 2019,6(5):74-81(in Chinese).
[121] 薛杨,孙永荣,赵科东,等.基准地图测绘下的视觉导航算法[J].兵工自动化, 2019, 38(10):22-27. XUE Y, SUN Y R, ZHAO K D, et al. Visual navigation algorithm based on standard mapping[J]. Ordnance Industry Automation, 2019, 38(10):22-27(in Chinese).
[122] 张国忠,沈林成,朱华勇.多无人机监督控制技术的发展现状及启示[J].国防科技, 2009, 30(4):5-10. ZHANG G Z, SHEN L C, ZHU H Y. The current situation and enlightenment of supervisory control technology for multiple UAVs[J]. National Defense Science and Technology, 2009, 30(4):5-10(in Chinese).
[123] TOTH S, HUGHES W, LADAS A. Wide-area littoral discreet observation:Success at the tactical edge[C]//Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR III, 2012:838916.
[124] 彭辉,相晓嘉,吴立珍,等.有人机/无人机协同任务控制系统[J].航空学报, 2008,29(S1):135-141. PENG H, XIANG X J, WU L Z, et al. Cooperative mission control system for a manned vehicle and unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(S1):135-141(in Chinese).
[125] SHAH J, BREAZEAL C. An empirical analysis of team coordination behaviors and action planning with application to human-robot teaming[J]. Human Factors, 2010, 52(2):234-245.
[126] TRAFTON J, CASSIMATIS N, BUGAJSKA M, et al. Enabling effective human-robot interaction using perspective-taking in robots[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2005, 35(4):460-470.
[127] FONG T, KUNZ C, HIATT L, et al. The human-robot interaction operating system[C]//Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction. New York:ACM, 2006:41-48.
[128] LOCKERD A, BREAZEAL C. Tutelage and socially guided robot learning[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2004:3475-3480.
[129] SAKITA K, OGAWARA K, MURAKAMI S, et al. Flexible cooperation between human and robot by interpreting human intention from gaze information[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2004:846-851.
[130] ALONSO-MORA J, LOHAUS S H, LEEMANN P, et al. Gesture based human-multi-robot swarm interaction and its application to an interactive display[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2015:5948-5953.
[131] ARTEMIADIS P. Brain-swarm control interfaces:The transition from controlling one robot to a swarm of robots[J]. Advances in Robotics&Automation, 2016, 5:e127.
[132] 金欣."深绿"及AlphaGo对指挥与控制智能化的启示[J].指挥与控制学报,2016,2(3):202-207. JIN X. Inspiration to intelligent command and control from deep green and AlphaGo[J]. Journal of Command and Control, 2016, 2(3):202-207(in Chinese).
[133] LI T. Analysis and inspiration to intelligent command and control[C]//Advances in Computer Science and Ubiquitous Computing, 2017:579-585.
[134] STODOLA P, MAZAL J. Tactical decision support system to aid commanders in their decision-making[C]//International Workshop on Modelling and Simulation for Autonomous Systems, 2016:396-406.
[135] WANG C, ZHU Y T, WEN X, et al. Multi-video supervisory target tracking improved by interactive on-line learning[C]//British Human Computer Interaction Conference, 2018:1-5
[136] ZHU Y T, WANG C, NIU Y, et al. hTLD:A human-in-the-loop target detect and tracking method for UAV[C]//IEEE/CSAA Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE Press, 2018:2063-2068.
Outlines

/